Украина
Каталог   /   Инструмент и садовая техника   /   Строительство   /   Лазерные нивелиры и дальномеры

Сравнение Bosch GLL 3-80 P Professional 0601063305 vs Bosch GRL 400 H Professional 0601061800

Добавить в сравнение
Bosch GLL 3-80 P Professional 0601063305
Bosch GRL 400 H Professional 0601061800
Bosch GLL 3-80 P Professional 0601063305Bosch GRL 400 H Professional 0601061800
Сравнить цены 4Сравнить цены 10
Отзывы
1
0
0
0
ТОП продавцы
Типлазерный нивелирротационный нивелир
Назначениедля охвата области 360°для охвата области 360°
Характеристики
Дальность измерений20 м10 м
Дальность измерений (с приемником)40 м200 м
Точность0.2 мм/м0.08 мм/м
Угол самовыравнивания4 °5 °
Время выравнивания4 с15 с
Скорость вращения600 об/мин
Рабочая температура-10 – 40 °C-10 – 50 °C
Резьба штатива1/4" и 5/8"5/8"
Автоотключение
Автоотключение прибора30 мин120 мин
Характеристики лазера
Излучение диода640 нм635 нм
Цвет лазеракрасныйкрасный
Класс лазера22
Вертикальных проекций2
Угол развертки (верт.)360 °
Горизонтальных проекций11
Угол развертки (гориз.)360 °360 °
Точечных проекций1
Зенит
Функции и возможности
Блокировка компенсатора
Общее
Степень защиты IP5456
Источник питания4хАА2xD
Время работы5 ч30 ч
Комплектация
 
кейс / чехол
батарейки
 
мишень
 
приемник
кейс / чехол
батарейки
зарядное устройство
 
батарейный отсек
Габариты159x75x141 мм183x170x188 мм
Вес740 г2000 г
Дата добавления на E-Katalogапрель 2014апрель 2014

Тип

Общий тип прибора.

Современные нивелиры различаются прежде всего по принципу работы: они бывают оптическими (традиционными либо цифровыми) и лазерными (обычными и ротационными). При этом от принципа работы зависит конкретная специализация — лазерные и оптические приборы различаются по назначению и применению. В свою очередь, основная функция дальномеров понятна уже из названия — это определение расстояний. Здесь различие также состоит в принципе работы: большинство современных дальномеров — лазерные, но встречаются и более специфические ультразвуковые устройства.

Вот более подробное описание каждой из этих разновидностей:

— Оптический нивелир. Нивелиры традиционной конструкции — в виде своего рода специализированной подзорной трубы, установленной на штативе и дополненной измерительными шкалами (в том числе в оптике, в поле зрения оператора), а также приспособлениями для выравнивания по горизонтали (компенсаторами, уровнями). Подобные приборы применяются для определения разницы высот способом так называемого геометрического нивелирования, для чего также используются нивелирные рейки — специальные планки с измерительными шкалами, устанавливаемые вертикально. А общий принцип этого способа заключается в следующем: оператор наводит зрительную трубу...нивелира, выставленную в горизонталь, на вертикальную нивелирную рейку, и определяет, напротив какой метки на рейке оказывается основная «прицельная марка» нивелира — эта метка и будет соответствовать фактической высоте расположения прибора. Подробнее о данном способе, в том числе о конкретных методиках замеров, можно узнать в специальных источниках. Здесь же отметим, что оптические нивелиры отлично подходят прежде всего для работы на обширных участках открытой местности; они применяются в основном в таких сферах деятельности, как геодезия и картография. Но вот для работ, где приходится иметь дело со сравнительно небольшими расстояниями (прежде всего строительства на небольших площадях), подобные приборы подходят плохо; при этом они довольно сложны и дороги, особенно по сравнению с лазерными устройствами. Так что оптических нивелиров в наше время выпускается сравнительно немного.

— Цифровой нивелир. По сути — продвинутая разновидность описанных выше оптических нивелиров. Внешне отличаются прежде всего тем, что вместо обычной подзорной трубы в таких устройствах устанавливается цифровая камера, выводящая изображение на экран на панели управления. Подобные нивелиры используются аналогично «обычным» оптическим, однако сама процедура работы автоматизирована и дополнена рядом продвинутых функций. Так, в большинстве моделей оператору не нужно вручную вести отсчет по рейкам, записывать результаты и проводить вычисления — прибор сам распознает зафиксированные метки, заносит их в память и обрабатывает полученные данные, выводя итоговый результат. Нередко предусматривается возможность сохранить информацию на карту памяти или другой носитель, скопировать ее на ПК, или даже подключить нивелир к ноутбуку и использовать специальное ПО (например, картографическое) прямо во время замеров. С другой стороны, подобные возможности обходится недешево: цифровые нивелиры стоят в разы, а то и на порядки дороже традиционных оптических. Так что в целом устройства из данной категории представляют собой высококлассные приборы, рассчитанные прежде всего на профессиональное применение — когда часто приходится иметь дело с большими объемами работ, в свете чего скорость и удобство обработки данных имеют ключевое значение.

— Лазерный нивелир. Своего рода лазерные проекторы, отображающие на стенах и других поверхностях метки — обычно в виде линий, однако есть также модели с функцией точек (подробнее см. «Точечных проекций») или даже только точечные (см. «Назначение»). Классический лазерный прибор фактически сочетает в себе функции нивелира и строительного уровня: его можно применять как для описанного выше геометрического нивелирования с использованием реек, так и для построения плоскостей и разметки линий (причем отдельные модели оснащаются механизмами, позволяющими произвольно выбирать угол наклона). Подобные устройства неплохо подходят для работы на небольших расстояниях, в том числе в помещениях; а благодаря относительно простой и недорогой конструкции они весьма популярны, прежде всего в строительстве. При этом отметим, что некоторые модели могут иметь довольно солидную дальность измерения — до 50 м сами по себе и до 150 м и более с использованием специальных приемников.
Подчеркнем, что в данный пункт включены традиционные лазерные нивелиры, у которых линия-метка формируется за счет рассеивания луча специальной призмой. Ротационные модели, работающие за счет вращения излучателя, вынесены в отдельный пункт и описаны ниже.

— Ротационный нивелир. Разновидность описанных выше лазерных нивелиров, в которой плоскость «отрисовывается» не за счет рассеивания лазерного луча в призме, а за счет быстрого вращения излучателя. В итоге след от луча сливается для глаза в одну сплошную линию. Ротационные нивелиры обычно стоят недешево и в большинстве своем представляют собой профессиональные приборы, предназначенные для работы на обширных площадках. Дальность измерений без приемника в них обычно составляет несколько десятков метров, а с приемником — до несколько сотен. В свете этого при использовании таких приборов нужно особо внимательно относиться к соблюдению правил безопасности — попадание мощного лазерного луча в глаза может нанести вред здоровью, и даже отражение лазерного «зайчика» от некоторых поверхностей нередко вызывает дискомфорт. Так что в зоне работы ротационного прибора крайне желательно пользоваться защитными очками или масками.

— Лазерный дальномер. Устройства для измерения расстояний при помощи лазерного луча. Ключевое преимущество подобных приборов перед линейками, рулетками и т. п. заключается в том, что в процессе замеров не нужно перемещаться — достаточно разместить прибор в исходной точке и навести луч на объект, расстояние до которого нужно определить. При этом дальность действия во многих моделях достигает 100 м и более, а погрешность не превышает считанных миллиметров, а то и долей миллиметра. Кроме того, современные лазерные дальномеры могут оснащаться различными дополнительными функциями вроде автоматического вычисления площади и объема, суммирования расстояний, фиксации минимума и максимума и т. п. К недостаткам подобных приборов можно отнести разве что снижение эффективности при наличии тумана, сильной запыленности или других подобных загрязнений воздуха, а также трудности с замерами расстояний до стекол и других прозрачных объектов, которые пропускают лазерный луч, а не отражают его. Впрочем, эти моменты не так часто оказываются критичными, а по рабочим характеристикам лазерные приборы заметно превосходят ультразвуковые. Поэтому именно данный тип дальномеров в наше время пользуется наибольшей популярностью.

— Ультразвуковой дальномер. Дальномеры, работающие за счет использования ультразвука; в подобных приборах также нередко устанавливается лазер, однако он предназначен исключительно для точного наведения на нужный предмет и не используется при замерах. В любом случае дальномеры этого типа хороши тем, что их эффективность практически не зависит от чистоты воздуха и типа поверхности на измеряемом предмете: ультразвук отлично работает через пыль, дым, туман и т. п., а также отлично отражается от стекла и других прозрачных для лазера материалов. С другой стороны, по «дальнобойности» и точности такие приборы заметно уступают лазерным: дальности замеров в них не превышает 15 – 20 м, а погрешность исчисляется не миллиметрами, а процентами — обычно порядка 0,5 – 1 % (что, к примеру, на расстоянии в 10 м соответствует фактической погрешности в 5 – 10 см). Как следствие, дальномеры этого типа в наше время встречаются значительно реже лазерных.

Дальность измерений

Дальность применения, на которой устройство остаётся полностью работоспособным без использования дополнительных приёмников (см. ниже); иными словами — радиус его действия без вспомогательных приспособлений.

В некоторых моделях может указываться диапазон, который демонстрирует минимальную (3 см, 5 см) и максимальную дальность измерения. Но в большинстве случаев указывается лишь максимальное значение.

Конкретный смысл этого параметра определяется типом инструмента (см. выше). Так, для оптических нивелиров дальность измерений — это наибольшее расстояние, на котором оператор сможет нормально видеть деления стандартной нивелирной рейки. Для лазерных нивелиров этот параметр определяет расстояние от прибора до поверхности, на которую проецируется метка, при котором эта проекция будет без проблем видна невооружённым глазом; а в дальномерах речь идёт о наибольшей дистанции, поддающейся измерению. Обычно дальность измерений указывается для идеальных условий — в частности, при отсутствии примесей в воздухе; на практике она может быть меньше из-за пыли, тумана, или наоборот, яркого солнечного света, «перекрывающего» метку. В то же время инструменты одного типа вполне можно сравнивать по этой характеристике.

Отметим, что выбирать прибор по радиусу действия стоит с учётом особенностей тех задач, которые планируется решать с его помощью: ведь большая дальность измерений обычно ощутимо ск...азывается на габаритах, весе, энергопотреблении и цене, а требуется она далеко не всегда. К примеру, навряд ли имеет смысл искать мощный лазерный нивелир на 30-40 м, если Вам требуется прибор для отделочных работ в стандартных квартирах.

Дальность измерений (с приемником)

Наибольшая дальность измерений, обеспечиваемая лазерным нивелиром (см. «Тип») при использовании специального приемника с фотоэлементом.

Благодаря чувствительности такой приемник способен реагировать даже на слабый лазерный луч, метка от которого уже не видна невооруженным глазом; при этом площадь фотоэлемента достаточно велика, а специальные индикаторы позволяют определить точное положение метки. Помимо прочего, это заметно расширяет радиус действия нивелира — дальность измерений с приемником обычно в несколько раз больше, чем без него. С другой стороны, такое оснащение неизбежно сказывается на общей стоимости прибора; а в некоторых моделях приемник и вовсе не входит в комплект поставки, его нужно приобретать отдельно. Впрочем, второй вариант имеет и свои преимущества: не нужно сразу платить за дополнительный аксессуар, его можно приобрести позже, когда возникнет реальная необходимость, при этом некоторые модели позволяют на свое усмотрение выбрать оптимальную модель приемника из нескольких вариантов.

Отметим, что приемник может пригодиться не только для увеличения дальности; эти моменты подробно описаны в п. «Комплектация».

Точность

Точность измерений, обеспечиваемая той или иной разновидностью нивелира (см. «Тип»).

Точность в данном случае указывают по погрешности — то есть наибольшему отклонению результатов измерения от фактических значений измеряемой величины. В нивелирах такое отклонение принято обозначать в миллиметрах на метр дистанции до рейки, мишени и т. п. Это обозначение более практично и интуитивно понятно, чем указание угловой погрешности; в частности, оно позволяет с легкостью определять максимальное отклонение для той или иной дистанции. К примеру, если прибор имеет точность 0,3 мм/м, то на дистанции в 7 м отклонение метки от того положения, где она должна быть, не будет превышать 0,3*7 = 2,1 мм.

Соответственно, чем меньше цифра в данном пункте — тем более высокую точность обеспечивает прибор. Низкие показатели погрешности особенно важны на больших дистанциях — ведь фактическое (линейное) отклонение, как мы видим, с увеличением расстояния возрастает пропорционально. С другой стороны, увеличение точности неизбежно сказывается на стоимости, а в некоторых случаях — также габаритах и весе приборов, притом что реальная потребность в таких характеристиках возникает далеко не всегда. Характерный случай как раз описан в примере выше: 0,3 мм/м — это средняя точность современного лазерного нивелира, а отклонение в 2,1 мм, получаемое на дистанции в 7 м, сравнимо с толщиной самой метки. Если уж речь зашла о конкретных цифрах, отметим, что в оптических нивелирах погрешность обычно...не превышает 0,05 – 0,1 мм/м, в ротационных — 0,1 – 0,15 мм/м, а в обычных лазерных она может варьироваться от составляет от 0,2 мм/м до около 1 мм/м.

Напоследок стоит отдельно стоит коснуться оптических нивелиров. Для них приводится еще и такой показатель, как СКП — среднеквадратичная погрешность; а она значительно (на порядки) меньше, чем заявленная точность. Подробнее об СКП см. соответствующий пункт ниже; здесь же отметим, что среднеквадратичная погрешность характеризует только качество самого прибора, а точность в мм/м описывает его эффективность в реальных условиях — при работе со стандартной нивелирной рейкой. То есть при определении реальных возможных отклонений стоит ориентироваться не на СКП, а именно на данный показатель.

Угол самовыравнивания

Максимальное отклонение от горизонтального положения, которое прибор способен исправить «собственными средствами».

Само по себе самовыравнивание значительно упрощает установку и первоначальную калибровку нивелиров (см. «Тип»), которые для работы нередко (а для оптических моделей — обязательно) требуется выставлять по горизонтали. При наличии этой функции достаточно установить прибор более-менее ровно (во многих моделях для этого предусматриваются специальные приспособления вроде круглых уровней) — а точная подстройка в продольной и поперечной плоскости будет проведена автоматически. А пределы самовыравнивания указываются обычно для обеих плоскостей; чем больше этот показатель — тем проще прибор в установке, тем менее он требователен к первоначальному размещению. В отдельных моделях этот показатель может достигать 6 – 8°.

Время выравнивания

Приблизительное время, которое требуется механизму самовыравнивания для того, чтобы установить нивелир в строго горизонтальное положение.

Подробнее о таком механизме см. «Пределы самовыравнивания». А фактическое время его выравнивания напрямую зависит от фактического отклонения прибора от горизонтали. Поэтому в характеристиках, как правило, приводят максимальное время выравнивания — то есть для ситуации, когда в исходном положении прибор наклонен на максимальный угол по обеим осям, продольной и поперечной. Поскольку нивелиры далеко не всего устанавливаются в таком положении, то на практике скорость приведения к горизонтали нередко оказывается выше заявленной. Тем не менее, оценивать разные модели имеет смысл именно по заявленным в характеристиках цифрам — они позволяют оценить максимальное количество времени, которое придется затратить на выравнивание после очередного перемещения прибора. Что касается конкретных показателей, то они могут варьироваться от 1,5 – 2 с до 30 с.

В теории чем меньше время выравнивания — тем лучше, особенно если предстоят большие объемы работ с частыми перемещениями с места на место. Однако на практике при сравнении разных моделей стоит учитывать другие моменты. Во-первых, повторим, что скорость выравнивания сильно зависит от пределов выравнивания; ведь чем больше углы отклонения — тем больше времени обычно требуется механизму, чтобы вернуть нивелир в горизонталь. Так что напрямую сравнивать между собой по скорости работы самовы...равнивания стоит в основном те устройства, в которых допустимые углы отклонения одинаковы или отличаются незначительно. Во-вторых, при выборе стоит учитывать специфику предполагаемых работ. Так, если прибор предстоит часто использовать на очень неровных поверхностях — то, к примеру, модель с временем выравнивания в 20 с и пределами самовыравнивания в 6° будет более разумным выбором, чем прибор с временем в 5 с и пределами в 2°, поскольку во втором случае много времени будет уходить на первоначальную (ручную) установку прибора. А для более-менее ровных горизонтальных плоскостей, наоборот, оптимальным вариантом может оказаться более быстрое устройство.

Скорость вращения

Скорость вращения излучателя в ротационном лазерном нивелире (см. «Тип»). Если в устройстве предусмотрено несколько вариантов скорости — они указываются через косую линию (например, «0/300/600»), а если регулировка осуществляется плавно — в характеристиках приводится весь диапазон скоростей (например, «0 – 600»).

При увеличении расстояния от прибора до «цели» увеличивается и длина пути, который лазерная метка должна проходить при каждом обороте. Соответственно, чем больше дальность работы — тем выше должна быть скорость вращения; в противном случае видимая глазом линия будет заметно мерцать, а то и вовсе превратится из линии в быстро пробегающую точку. В то же время повышение оборотов увеличивает энергопотребление и снижает автономность, а также приводит к дополнительному износу механизмов прибора. Поэтому на небольших расстояниях высокая скорость вращения будет излишней.

В свете всего этого максимальную скорость вращения производители обычно подбирают с учетом дальности действия прибора — чтобы на такой дальности лазер эффективно формировал метку и в то же время не вращался излишне быстро. Так что при выборе конкретной модели обычно незачем обращать внимание на максимальные обороты. А вот к чему стоит присмотреться — так это к возможностям по выбору скорости вращения. Чем больше таких возможностей — тем точнее можно подстроить нивелир под конкретные условия работы. При этом расширенные функции управления неизбежно влияют на цену, однако это влияние чаще...всего незначительно по сравнению с общей стоимостью самого прибора.

Рабочая температура

Диапазон температур, при котором прибор способен гарантированно работать достаточно долгое время без сбоев, поломок и превышений указанной в характеристиках погрешности измерений. Стоит учитывать, что речь идёт в первую очередь о температуре корпуса устройства, а она зависит не только от температуры окружающего воздуха — к примеру, оставленный на солнцепёке инструмент может перегреться даже в довольно прохладную погоду.

В целом обращать внимание на данный параметр стоит тогда, когда Вы ищете модель для работы на открытом воздухе, в неотапливаемых помещениях и других местах с условиями, ощутимо отличающимися от комнатных; в первом случае имеет смысл убедиться также в наличии пылевлагозащиты (см. «Класс защиты»). С другой стороны, даже относительно простые и «близорукие» нивелиры/дальномеры обычно неплохо переносят и жару, и холод.

Резьба штатива

Типоразмер резьбы, используемой для крепления нивелира/дальномера на штатив (при наличии такой возможности). Этот параметр может пригодиться в том случае, если у Вас уже есть геодезический штатив, который Вы хотите использовать с инструментом.

Наиболее популярные в современных устройствах варианты — 1/4" и 5/8". Стоит отметить, что 1/4" является стандартным размером для фототехники — соответственно, нивелиры с такой резьбой можно устанавливать даже на обычные фотоштативы.
Динамика цен
Bosch GLL 3-80 P Professional 0601063305 часто сравнивают