Укр|Eng|Рус
Ukraine
Catalog   /   Computing   /   Components   /   Hard Drives

Comparison Toshiba Canvio Basics 2.5" HDTB310EK3AA 1 TB vs Transcend StoreJet 25M2 2.5" TS1TSJ25M2 1 TB

Add to comparison
Toshiba Canvio Basics 2.5" HDTB310EK3AA 1 TB
Transcend StoreJet 25M2 2.5" TS1TSJ25M2 1 TB
Toshiba Canvio Basics 2.5" HDTB310EK3AA 1 TBTranscend StoreJet 25M2 2.5" TS1TSJ25M2 1 TB
Compare prices 10
from 1 817 ₴
Outdated Product
User reviews
TOP sellers
Placementexternalexternal
TypeHDDHDD
FeaturespCpC
Size1000 GB1000 GB
Form factor2.5 "2.5 "
Manufacturer's warranty2 years3 years
Connection
Interface
 
USB 3.2 gen1
USB 2.0
 
Technical specs
Cache memory8 MB8 MB
RPM5400 rpm5400 rpm
Average search time18 ms
Features
Features
 
 
shockproof
backup button
General
MIL-STD-810
Power source (external)USB portUSB port
Materialplasticrubberized
Size119x79x15 mm126x82.4x20.4 mm
Weight230 g206 g
Color
Added to E-Catalogfebruary 2015november 2011

Manufacturer's warranty

Manufacturer's warranty provided for this model.

In fact, this is the minimum service life promised by the manufacturer, subject to the rules of operation. Most often, the actual service life of the device is much longer than the guaranteed one.

Interface

— SATA. Nowadays, it is the most popular interface for connecting internal hard drives. the first version of SATA provides data transfer rates of about 1.2 Gbps, SATA 2 has a practical data transfer rate of about 2.4 Gbps (300 MB / s), and the most advanced generation of SATA 3 has a speed of 4.8 Gbps (600 Mbps)

eSATA. Modification of the SATA interface, designed to connect external hard drives; not compatible with internal SATA. The practical data transfer rate is similar to SATA 2 at about 2.4 Gbps (300 Mbps).

USB 2.0. The earliest of the USB standards found in modern hard drives — and exclusively external (see "Performance"). Provides connection to a traditional full-size USB port, provides data transfer rates up to 480 Mbps, as well as a rather low power supply, which is why drives with this type of connection often require additional power. In light of all this, and the advent of the more advanced USB 3.2 standard (see below), USB 2.0 is considered obsolete today and is extremely rare, mainly in inexpensive and early models of drives. However, a drive with this interface can also be connected to a newer USB port — the main thing is that the connectors match.

USB 3.2 gen1(previously USB 3.1 gen1 and USB 3.0). The standard for connecting external HDDs, whic...h replaced the USB 2.0 described above. Uses a traditional full-size USB connector, delivers data transfer speeds up to 4.8 Gbps (600 Mbps) and higher power ratings, making these drives easier to handle without external power. However, for the same reason, you need to be careful when connecting USB 3.2 gen1 drives to older USB 2.0 connectors — such a connector may not have enough power to power a newer drive.

USB 3.2 gen2. Further development of the USB 3.2 standard (formerly known as USB 3.1 gen2 and USB 3.1). The maximum data transfer rate in this version has been increased to 10 Gbps, and the power supply can reach 100 W (supporting USB Power Delivery technology). At the same time, drives with this type of connection can also work with earlier versions of full-size USB connectors — the main thing is that there is enough power.

USB-C 3.2 gen1(formerly USB-C 3.1 gen1 and USB-C 3.0). USB Type-C connection compliant with USB 3.2 gen1 capabilities. These features are described in more detail above, the difference from the “regular” USB 3.2 gen1 in this case lies only in the type of connector: this is a relatively small (slightly larger than microUSB) socket, which also has a double-sided design. Due to its compact size, USB-C is found both in full-sized PCs and laptops, and in compact gadgets like smartphones and tablets; some drives with this connection are initially capable of "mobile" use.

USB-C 3.2 gen2(formerly USB-C 3.1 gen2 and USB-C 3.1). Updating and improving the USB-C 3.2 gen1 described above — the same USB-C connector and increased data transfer rate to 10 Gbps (as in the "regular" USB 3.2 gen2).

— IEEE 1394. Also commonly known as "FireWire". A universal connector, similar in capabilities to USB 2.0 (see above), but used much less often, and nowadays is practically obsolete.

— Thunderbolt. High-speed interface for connecting external peripherals. It is used mainly in Apple computers and laptops, although it is also found in equipment from other manufacturers. Note that in modern HDDs there are mainly two versions of Thunderbolt, which differ not only in speed, but also in connector: Thunderbolt v2(up to 20 Gbps) uses a miniDisplayPort plug, and Thunderbolt v3(up to 40 Gbps) — USB type C plug (see above). Thus, in some hard drives, USB-C and Thunderbolt connections are implemented through a single hardware connector, which automatically detects which computer input the device is connected to.

— S.A.S. Modification of the SCSI interface, provides data transfer rates up to 6 Gbps (750 Mb / s). It is used mainly in servers, in desktop PCs and laptops it is practically not used.

— Fibre Channel. Professional high-speed interface primarily used in server drives ("Purpose"); similar in many ways to SAS. Allows "hot" replacement of drives; the actual data transfer rate over Fibre Channel, depending on the version, can reach 12.8 Gbps.

Average search time

The time it takes for the hard disk mechanics to find random requested data to read. For each specific case, the search time is different, as it depends on the location of the data on the surface of the disk and the position of the read head, therefore, the average value is indicated in the characteristics of hard drives. The lower the average seek time, the faster the disk works, all other things being equal.

Features

Wi-Fi module. The hard drive has its own Wi-Fi module. The Wi-Fi standard was originally created for building wireless computer networks, but can also be used for direct connection to various devices. Disks with this function can be used as network drives — data storages that can be accessed by every network user. They are also useful for smartphones and tablets: the built-in memory of such devices rarely exceeds a couple of tens of gigabytes, and external storage can come in handy. Many Wi-Fi drives are initially optimized for use with portable electronics (and some are even designed for specific popular models), but anyway, you should make sure that the drive and gadget are compatible in advance.

Shock-resistant body. A housing that protects the hardware of the hard drive from shock and shock. It is undesirable to specifically drop such media, but anyway, they endure falls better than unprotected counterparts. The specific degree of impact protection should be specified separately; the traditional indicator is resistance to falls from a height of 1 – 1.5 m.

— Data encryption. Ensures the security of storing information on the disk: access to encrypted information can only be obtained by someone who knows the password. The encryption module is an integral part of the drive and does not depend on the computer to which it is connected. The ability to encrypt data is critical if...you plan to write confidential information to discs; this feature is especially useful for portable drives and laptop drives, which are more at risk of theft than fixed systems and their components.

— Built-in USB connector. USB plug provided in the design of the drive itself. Thus, no additional cables, adapters, etc. are required to connect such a disk to the computer's USB port.

— Backup button. A separate button for starting the file backup procedure, located on the case of an external hard drive. When pressed, the important information for the user contained on the disc is automatically copied to a predefined folder. It is worth considering that the backup settings must be manually configured beforehand.

— Energy saving mode. Drives with power save mode, other things being equal, consume less electricity than conventional drives — both during operation and in standby mode. They usually have a low rotational speed (see Spindle speed (rpm)). Reduced power consumption is especially important for laptop drives, as it allows longer battery life.

MIL-STD-810

Disc compliance with MIL-STD-810 security standard.

Initially, this is a set of specifications that establishes certain levels of protection for electrical equipment from environmental factors. The standard was developed for testing military equipment for the US Army in order to maintain performance in various adverse conditions. It imposes quite stringent requirements on the test subjects: the level of product resistance to impacts during drops and shakes is checked, vibration tests are carried out, the device is tested in a wide temperature range, in rain, in fog, under the influence of sand, dust, etc. However, the MIL-STD-810 label in "civilian" products does not always mean the highest degree of protection. This is due to the lack of strict regulation of the tests. So, the most ingenious vendors test the tested gadgets literally on one or two points of the programme from an extensive list and often deliberately do not cover which tests were passed. Accordingly, the specific features of such protection remain reliably unknown. The standard has been in force since 1962. Each new version of it is indicated by a letter of the Latin alphabet at the end. The further the letter down the alphabet, the more recent the version of the certificate. Since 2008, the MIL-STD-810G specification has been in force everywhere, and in 2019 a new edition of the MIL-STD-810H standard was approved.

Material

Main material used for external hard drive enclosure (see "Performance").

Plastic. The most common option. Plastic is light, cheap, quite practical, including has good strength properties. In addition, it allows you to create cases of complex shape and almost any colour.

Metal. Usually, aluminium-based alloys are used for metal cases, but other options are also found. Anyway, such cases are much stronger than plastic ones, and also have a stylish appearance. On the other hand, in terms of impact protection, this material has no advantages over plastic, but it costs much more, and it can weigh much more (depending on the specific alloy).

Rubberized. In this case, it usually means an additional external coating of rubber applied to a plastic or metal case. All rubberized cases are classified as shock resistant (see Features/Features) — thanks to their softness and resiliency, this coating provides additional protection against impacts. In addition, this material does not slip in the hands, thereby reducing the risk of dropping the device.

— Leather. Housing made of hard material (metal or plastic, see above) covered with natural or artificial leather. Such a coating plays an exclusively aesthetic role: it gives the hard drive a solid appearance, actually turning the device into a fashion accessory. At the same time, t...he use of leather significantly affects the cost; so paying attention to such models is for those for whom the design of the drive is no less important than the functionality.
Price graph
Toshiba Canvio Basics 2.5" often compared