Укр|Eng|Рус
Ukraine
Catalog   /   Sound & Hi-Fi   /   Headphones

Comparison ELARI NanoPods vs Motorola Stream

Add to comparison
ELARI NanoPods
Motorola Stream
ELARI NanoPodsMotorola Stream
from 1 723 ₴
Outdated Product
from 1 872 ₴
Outdated Product
User reviews
Main
Secure fixation. Hi-Fi sound. Voice prompts in Russian.
Voice assistant call button, charging case
Connection and design
Design
in-ear
in-ear
Microphonebuilt into the bodybuilt into the body
Connection typewirelesswireless
Connection
Bluetooth v 4.2
 
Range10 m10 m
Specs
Soundstereostereo
Frequency range20 – 20000 Hz
Emitter typedynamicdynamic
Features
Volume control
Voice assistantApple Siri / Google Assistant
Power supply
Power sourcebatterybattery
Headphone battery capacity50 mAh
Charging time2 h
Operating time (music)4.5 h2 h
Charging portmicroUSB
General
Touch control
WaterproofIPX4
Weight
6 g /one earphone/
In box
silicone tips
charging case
silicone tips
charging case
Color
Added to E-Catalogdecember 2017september 2017

Connection

The specific connection interface provided in the headphones. At the same time, some models may provide several options at once - these are either combined devices (see "Type of connection"), or wired headphones equipped with additional adapters or replaceable cables, or wireless devices connected via a radio channel or infrared port (in the latter case the characteristics additionally specify the method of connecting the complete adapter).

- micro-Jack (2.5 mm). A wired connector similar to the popular 3.5mm mini-Jack (see below), but smaller. Equipment with such a connection is rare - mostly these are miniature devices, where there is simply no room for a 3.5 mm jack. Accordingly, this interface has not received distribution among headphones either: it is almost never found in its pure form, models with such a plug are usually supplemented with an adapter or cable for mini-Jack.

- mini-Jack(3.5 mm). Perhaps the most popular modern type of audio connector; if a device has a headphone output, it is most likely a 3.5 mm jack. Accordingly, most headphones with a wired connection use this type of connector. It is worth noting that headphones with a microphone designed for such a connection are equipped with a special plug for a combined headphone + microphone audio jack (such connectors are popular in portable gadgets and laptops). But with a socket designed only for “ears” without a microphone, such a plug may not work...correctly. An alternative would be headphones equipped with two separate mini-jack plugs; see below for more details on this option.

- mini-Jack (2 x 3.5 mm). Models with two 3.5 mm mini-jack plugs. This option is guaranteed to mean that we are not talking about classic headphones, but about a headset with a microphone: one plug is used for headphones, the second for a microphone. Such models are convenient when used with equipment that has separate 3.5 mm jacks for “ears” and a microphone - for example, for a PC.

- Pentaconn (4.4 mm). It is a 5-pin balanced output. Pentaconn uses a larger than the mini-Jack plug, its size is 4.4 mm, it is stronger and more reliable than the 3.5 mm connection. The Pentaconn's balanced connection makes it possible to handle higher power audio signals. Thanks to this connection, it is possible to transmit a signal over a fairly long distance. Accordingly, such a connector is relevant for headphones of the highest category.

- Jack (6.35 mm). The largest type of Jack type audio connector found in modern technology. Outputs of this type are found mainly in stationary audio equipment - they are too bulky for portable devices, it is easier to use a 3.5 mm mini-jack there. At the same time, a 6.35 mm jack is considered to be a more suitable interface for professional and audiophile-class equipment: it provides a more reliable connection, greater contact density and, accordingly, less likelihood of interference. Therefore, although relatively few headphones are equipped with their own Jack type connector (mostly premium solutions), many models with a 3.5 mm mini-Jack plug are equipped with a 6.35 mm adapter.

XLR. A characteristic round connector with a lock-lock and 3 contacts (there are other options in quantity). As a rule, it is used to transmit an analog signal through a balanced connection. This connection provides high resistance to interference, typical for professional applications; at the same time, the plug itself has rather large dimensions. In view of all this, the presence of XLR is relevant mainly for headphones designed for use with advanced stationary equipment.

Bluetooth. The most popular wireless connection option in today's headphones. This is due to the fact that built-in Bluetooth modules are available in almost any modern smartphone, tablet or laptop, and appropriate adapters can be produced for devices without this module (for example, a PC). True, the sound quality with a traditional Bluetooth connection is relatively low, but special technologies such as aptX and aptxHD are increasingly being used to remedy the situation (see "Codec Support").
It is also worth noting that Bluetooth modules can correspond to different versions (the latest for 2022 is Bluetooth 5.0, Bluetooth 5.1, Bluetooth 5.2 and Bluetooth 5.3) this moment does not affect the sound quality, however, it determines a number of additional nuances - the range and reliability of communication, the ability to work through walls and other obstacles, resistance to interference, etc. In modern "ears" you can find the following versions of Bluetooth:
  • Bluetooth v4.0. An update in which the capabilities of version 3.0 (classic + high-speed Bluetooth) were supplemented with a third format - Bluetooth LE (low energy). This communication standard is intended mainly for the transmission of small amounts of information - in particular, service data packets to maintain a connection. At the same time, the creators managed to combine economical energy consumption and a long communication range - it can reach 100 m. This has a positive effect on the stability of the connection.
  • Bluetooth v 4.1. Development and improvement of Bluetooth 4.0. Speaking specifically about headphones, the key innovation for them in this version was improved noise immunity when working near devices with 4G (LTE) mobile communication devices (in earlier standards, Bluetooth and LTE signals could overlap, which led to failures). So for use with a 4G smartphone, headphones with Bluetooth support of at least v 4.1 are definitely recommended.
  • Bluetooth v4.2. Further, after 4.1, the development of the Bluetooth standard, which mainly introduced a number of general improvements in reliability and noise immunity.
  • Bluetooth v5.0. Massive Bluetooth update released in 2016. One of the most notable innovations was the introduction of two additional Bluetooth LE operating modes: high speed mode (due to reduced range) and extended range mode (due to reduced speed). In the case of headphones, the main significance of these innovations is to improve the overall reliability of the connection, increase its range and reduce the number of gaps.
  • Bluetooth v 5.1. Update version v 5.0, which, in addition to general improvements in the quality and reliability of communication, has such an interesting feature as determining the direction from which the Bluetooth signal is coming. Thanks to this, a smartphone or other gadget that supports this standard is able to determine the location of connected devices with an accuracy of up to a centimeter; this can be useful, for example, to search for lost sight, but still working headphones.
  • Bluetooth v5.2. The next, after 5.1, is the Bluetooth 5th generation update. The main innovations in this version are a number of security improvements, additional power optimization in LE mode, and a new audio signal format for synchronized parallel playback on multiple devices.
  • Bluetooth v5.3 was introduced at the dawn of 2022. Among the innovations, it accelerated the process of negotiating the communication channel between the controller and the device, implemented the function of quickly switching between the state of operation in a small duty cycle and high-speed mode, improved the throughput and stability of the connection by reducing the susceptibility to interference. In case of unexpected interference in the Low Energy mode of operation, the procedure for selecting a communication channel for switching is now accelerated.
- Radio channel. A wireless radio connection that does not use Bluetooth technology (see above). Such headphones are usually equipped with an adapter that connects to the signal source by wire - for example, via USB or mini-Jack 3.5. This connection method is more versatile than Bluetooth, it can be used even with devices that do not have wireless modules. In addition, the radio channel provides a long range (often up to several tens of meters), and the sound quality is quite high even without the use of special technologies. The disadvantage of this option is the actual presence of an adapter, which is not always appropriate: for example, it is easier to use Bluetooth headphones with a tablet or smartphone.

- IR channel. Another method of wireless connection, a feature of which is that it does not use radio waves, but infrared radiation. Theoretically, the advantage of such a connection is resistance to electromagnetic interference, the disadvantage is that it only works in the line of sight. In practice, the situation is such that in most cases it is easier to use Bluetooth or a radio channel for a wireless connection. So this option is found only in specialized devices for equipment equipped with its own IR outputs - in particular, among headphones for car monitors.

— USB A. Wired connection to a standard (full dimensions) USB connector. This option is found exclusively among headphones designed for computers / laptops or gaming consoles. One of its advantages is that sound via USB is transmitted digitally and is processed not by the computer's audio card, but by the built-in headphone converter; such a converter often provides better sound quality than the said audio card. In addition, multi-channel audio can be transmitted via a USB connection - this point will be especially appreciated by gamers. Another advantage is that when using USB-headphones, specialized audio outputs remain free, and you can connect other equipment to them - for example, computer speakers or a vibrocap.

USB-C. A relatively new type of USB connector, used in both desktop computers and portable devices - as the heir to microUSB. It does not differ much in dimensions, but it has a more advanced design - in particular, it is made double-sided, which makes it easier to connect. Most often complemented by other connection options (they can be both wired and wireless).

Lightning. A universal connector used in Apple portable equipment - iPhone smartphones and iPad tablets - since 2012. Not used by other manufacturers. Accordingly, models with such an interface are designed specifically for "apple" technology (primarily iPhone and iPod touch players). This type of connection is especially relevant given the fact that in the latest iPhones, the manufacturer has completely abandoned a separate audio output, and the only way to connect headphones is the Lightning port.

- Corporate outlet. A connection connector that is not related to generally accepted standards and is used to a limited extent in the equipment of one or more manufacturers. Such connectors are found mainly among headphones for mobile phones. However, in connection with the general standardization, this option has practically disappeared from the scene. Theoretically, the proprietary connector is also the Lightning described above, but it is separated into a separate category due to the popularity of Apple technology.

Frequency range

The range of audio frequencies that headphones can reproduce.

The wider this range — the more fully the headphones reproduce the spectrum of sound frequencies, the lower the likelihood that too low or too high frequencies will be inaccessible. However, some nuances should be taken into account here. First of all, we recall that the range of perception of the human ear is on average from 16 Hz to 22 kHz, and for the full picture it is enough that the headphones cover this range. However, modern models can noticeably go beyond these limits: in many devices, the lower threshold does not exceed 15 Hz, or even 10 Hz, and the upper limit can reach 25 kHz, 30 kHz, and even more. Such extensive ranges in themselves do not provide practical advantages, but they usually indicate a high class of headphones, and sometimes they are only given for promotional purposes.

The second important point is that an extensive frequency range in itself is not a guarantee of good sound: the sound quality also depends on a number of parameters, primarily the frequency response of the headphones.

Volume control

The headphones have their own volume control. Such a regulator can be placed both on the wire and on one of the cups (the latter is typical for wireless models). Anyway, this function allows you to easily adjust the volume: for this you do not need to go into the computer settings, press the buttons on the player or smartphone, etc., just use the control at hand. On the other hand, additional equipment complicates and increases the cost of the design, and also increases the likelihood of distortion. In light of the latter, volume control is almost never found in professional headphones.

Voice assistant

Headphones with voice assistant support the user interaction with the device to a new level. The call of the assistant. is carried out by pressing one of the control buttons on the headphones or by a specific voice command (for example, «Ok, Google» for the Google Assistant virtual apprentice). The assistant pauses playback, instantly changes the volume of the music, can notify the user of new alerts, helps to answer messages without the help of hands, and commands are given to the paired smartphone via voice control from the headphones.

Headphone battery capacity

The capacity of the battery installed in the headphones of the corresponding design (see "Power").

Theoretically, a higher capacity allows to achieve greater battery life, but in fact, the operating time also depends on the power consumption of the headphones — and it can be very different, depending on the characteristics and design features. So this parameter is secondary, and when choosing it is worth paying attention not so much to the battery capacity, but to the directly claimed operating time (see below).

Charging time

The time required to fully charge the battery in properly powered headphones (see above).

In this case, we mean the battery charging time from 0 to 100% when using a standard charger (or a third-party charger with identical characteristics). Accordingly, in fact, this indicator may differ from the claimed one, depending on the specifics of the situation. However, in general, it is quite possible to evaluate different models and compare them with each other: headphones with a shorter claimed charging time will in fact charge faster (ceteris paribus).

Also note that an increase in battery capacity (and headphone battery life) inevitably implies an increase in charging time. To compensate for this moment, special fast charging technologies can be used — however, they affect the cost and require the use of specialized charger.

Operating time (music)

The declared operating time of headphones with autonomous power supply (see above) when listening to music on a single battery charge or a set of batteries.

As a rule, the characteristics indicate a certain average operating time in music listening mode, for standard conditions; in practice, it will depend on the intensity of use, volume level and other operating parameters, and in models with replaceable batteries - also on the quality of specific batteries. However, based on the stated time, you can fairly reliably assess the autonomy of the selected headphones and compare them with other models. As for specific values, relatively “short-lived” devices have a battery life of up to 8 hours, a figure of 8 – 12 hours can be called quite good, 12 – 20 hours – very good, and in the most “long-lasting” headphones the operating time can exceed 20 hours.

Charging port

The type of connector used to charge the built-in headphone battery, or more precisely, to connect an external charger. The role of such a device can be played by a network or car adapter, a power bank, or even a USB port of a PC or laptop (if the appropriate cable is available). At the same time, in true wireless models (available with a long stem, a short stem, without a stem, with a behind-the-ear mount and a clip (Clip-on)), the “charger” wire is connected to a special docking station, where the “ears” are placed during charging (with In this case, the station itself usually has its own battery and can also work as an autonomous power bank). And in wireless and combined solutions of a more traditional design, the charging input is often located on the headphone body itself. As for connectors, the most common options are:

- microUSB. A smaller version of the USB connector designed for portable devices. It appeared quite a long time ago, but does not lose popularity in our time and is used by the vast majority of manufacturers.

- USB C. A miniature USB connector, positioned, among other things, as a potential successor to microUSB. Unlike its predecessor, it has a double-sided design, thanks to w...hich the plug can be inserted into the socket on either side. It is still relatively rare, but the situation is likely to change in the coming years.

- Lightning. Apple branded connector. Like USB C, it has a reversible design, while being somewhat more convenient and reliable, but the use of Lightning is limited to products from Apple itself and its Beats brand.

Touch control

This feature means that the controls in the headphones are not traditional buttons that you need to press, but sensors that are triggered by touch.

Touch control is somewhat more expensive than push-button control, but it has a number of advantages over it. Firstly, it gives the headphones a neat and technological appearance, with a minimum of protruding parts. Secondly, due to the absence of moving parts, the sensors are more reliable and compact. Thirdly, it is purely physically more convenient to use them, especially with the small size of the headphones. These moments are especially relevant for the "ears" of the true wireless format (see "Type of cable"), so it is in them that touch control is most often found. However, there are exceptions to this rule. Also note that the difference in price between buttons and sensors is often almost imperceptible compared to the cost of headphones in general.
ELARI NanoPods often compared