Укр|Eng|Рус
Ukraine
Catalog   /   Sound & Hi-Fi   /   Musical Instruments   /   Pianos & Keyboards   /   Digital Pianos

Comparison Casio Compact CDP-130 vs Korg B1

Add to comparison
Casio Compact CDP-130
Korg B1
Casio Compact CDP-130Korg B1
from 29 110 ₴
Outdated Product
from 42 800 ₴
Expecting restock
User reviews
Bodyportableportable
Keys
Number of keys88 шт88 шт
Sizefull sizefull size
Mechanicsmalleusmalleus
Sensitivity adjustment
Rigidityweightedweighted
Specs
Polyphony48 voices120 voices
Built-in timbres10 шт8 шт
Tempo change30 – 25540 – 120
Metronome
Built-in compositions
Effects and control
Timbres layering
Reverberation
 /10/
Chorus
 /5/
Transposition
Pitch controller
Fine tuning
 /415.5 – 465.9 Гц/
More featuresHall
Connectors
Connectable pedals1 шт1 шт
Outputs
USB to host (type B)
 
Headphone outputs
1 шт /combined with linear/
1 шт /combined with linear/
Linear outputs1 шт1 шт
General
Built-in acoustics16 W18 W
Number of bands11
Power consumption18 W3 W
Dimensions (WxHxD)1322x129x286 mm1312x117x336 mm
Weight11.4 kg11.8 kg
In box
music stand
pedal
PSU
music stand
pedal
PSU
Color
Added to E-Catalognovember 2016november 2016

Sensitivity adjustment

The ability to adjust the sensitivity of the digital piano keyboard.

The sensitivity level determines the volume and sharpness of the sound that the instrument will produce at a certain force and speed of pressing the key. High sensitivity allows you to achieve sharp, expressive sound with significant volume differences, low — relatively quiet, soft and smoothed. And some instruments even provide "zero" sensitivity — when all keys sound with the same volume and dynamics, regardless of the pressing force. This can be useful, for example, to imitate the sound of certain instruments (such as the harpsichord).

Polyphony

The number of voices supported by the digital piano — more precisely, the maximum number of voices that the instrument can play at the same time.

This parameter should not be confused with the number of notes that can be played simultaneously on the keyboard. The fact is that in many timbres, several voices (tone generators) are used for each note at once — this is the only way to achieve a more or less reliable sound. Thus, the required number of voices can be many times higher than the number of notes — for example, the simplest chord of 3 notes may require 9 or even 12 voices. In addition, tone generators are used to play auto accompaniment parts and built-in songs (see below), and here the number of voices can already be measured in tens.

In light of all this, polyphony of less than 90 voices is typical mainly for relatively simple and inexpensive instruments that are not designed for complex tasks. The smallest number found in modern digital pianos is 32 voices. It is desirable for a more or less solid instrument to have at least 96 voices, and in top models this figure can reach 256.

Built-in timbres

The number of built-in sounds provided by the Digital Piano.

Despite the name, digital pianos are extremely rarely designed to imitate the sound of only a piano — the electronic hardware allows them to provide other timbres of sound. In addition, even the piano has its own varieties — for example, among the grand pianos there are 6 main classes, from large concert to miniature. So the built-in sounds can cover different kinds of pianos, as well as other instruments and sound effects.

The abundance and variety of timbres in digital pianos as a whole is not as great as in synthesizers, however, in this category there are very “charged” models, with a hundred timbres or more (in the most multifunctional, this number can exceed 900). However, it is worth specifically looking for a “multi-instrumental” model if you do not intend to be limited to the sound of the piano and would like to have more freedom of choice. It is worth remembering that a specific set of timbres can be different.

If the instrument is bought exclusively as a piano, then here, on the contrary, it is worth paying attention primarily to solutions with a small number of timbres. Such models are not only cheaper than "universals" — they can also sound better (due to the fact that there are few timbres and the manufacturer can carefully approach the sound quality of each built-in "instrument").

Tempo change

The range over which the tempo of the sound played by the instrument can change. It can be either a built-in melody or a part recorded on a sequencer, or an auto accompaniment, a tutorial or a metronome. For more information on all of these features, see the corresponding glossary entries. Here we note that a change in tempo is often required in fact — for example, to speed up an initially "sluggish" accompaniment or slow down a training programme that is difficult to master at the original tempo.

Tempo is traditionally indicated in beats per minute. The classical, "academic" range covers options from 40 bpm ("grave", "very slow") to 208 bpm ("prestissimo", "very fast"), however, in modern digital pianos, the working range of tempos is often significantly wider.

Timbres layering

The ability to overlay individual timbres provided in the instrument (or loaded into its memory by the user). Simply put, layering allows you to play a part on two timbres at once — for example, to complement the sound of a grand piano with the sound of a violin. This allows you to achieve a richer and more original sound.

Specific combinations of sounds can be stored in memory, however, in many models, the user himself can choose a combination of his own. However, it's ok to clarify these details separately.

Fine tuning

The ability to fine-tune the digital piano for specific frequencies.

The essence of this function is generally similar to transposition — a slight shift of each note in frequency up or down. However, with fine tuning, the shift does not occur in steps (by an integer number of semitones), but very slowly and smoothly — by a certain number of hertz or even tenths of a hertz relative to the base scale. The base scale is often called "440 Hz" — this is the standard frequency of the "la" note of the first octave, according to which the rest of the scale is tuned. For a musician, fine tuning usually looks like an opportunity to set a different key frequency value — for example, 438 Hz or 441.2 Hz.

This feature can be useful for tuning the digital piano to another instrument whose frequencies change smoothly, such as a guitar. In many situations, it is easier to change the frequency settings in a digital device than to twist the strings or otherwise fiddle with complex tuning.

More features

Additional features and sound customization options provided by the instrument in addition to those listed above. In this paragraph, usually, various original proprietary technologies and solutions are indicated; the specific meaning of these functions is best specified in the documentation for the tool.

Outputs

USB to host (type B). Connector for connecting a digital piano to a computer using the USB standard; in this case, the instrument plays the role of a peripheral device. The possibilities of such a connection can be different: recording live music, updating firmware, voices and auto accompaniment styles, using the digital piano as an external MIDI keyboard, fine-tuning the instrument and troubleshooting, etc.; specific functionality varies from model to model.

MIDI out. An output that allows you to broadcast MIDI signals (MIDI events) from the Digital Piano to external devices. A MIDI signal is, in fact, a "preparation" of sound: a signal generated when a key is pressed and containing information about the note number, duration, and force of pressing. Based on this signal, the electronics of the instrument (or other device) generates the sound of a certain timbre. The MIDI output can be useful for connecting a digital piano to, for example, an external sequencer for recording, or to a synthesizer for playback in a tone that is not in the piano itself.

MIDI thru. Output used for switching MIDI signals. The description of such signals is given above, but here we note that the MIDI thru output duplicates the signals received at the MIDI input of the digital piano. This function can be useful in some specific cases — for example, connecting sever...al electronic instruments together.

Built-in acoustics

The power of the native acoustics installed in the Digital Piano.

This indicator directly affects the maximum volume that the instrument is able to produce "on its own", without connecting external speakers. At the same time, it is worth noting that many manufacturers go to the trick and indicate in the characteristics not the rated power (rms power when operating at full volume), but the peak power, which is the highest power that the acoustics can deliver at short “ups” of volume. Peak power values can be quite impressive — in the tens and hundreds of watts — but these figures have a very indirect relation to the actual capabilities of the speakers. Therefore, before choosing, it is worth clarifying what kind of power is mentioned in the characteristics. To do this, it is not necessary to look for detailed data on the instrument, it is enough to compare the power of the speakers with the power consumption (see below): if the claimed power of the acoustics is greater than the power consumption of the entire instrument, then the manufacturer indicated exactly the peak value.
Price graph
Casio Compact CDP-130 often compared
Korg B1 often compared