Украина
Каталог   /   Компьютерная техника   /   Комплектующие   /   Системы охлаждения

Сравнение Thermaltake Contac 21 vs Thermaltake Contac 16

Добавить в сравнение
Thermaltake Contac 21
Thermaltake Contac 16
Thermaltake Contac 21Thermaltake Contac 16
от 636 грн.
Товар устарел
от 788 грн.
Товар устарел
Отзывы
Основное
Назначениедля процессорадля процессора
Типактивный кулерактивный кулер
Радиатор
Тепловых трубок4 шт2 шт
Контакт теплотрубокпрямой
Материал радиатораалюминий/медьалюминий/медь
Материал подложкиалюминий
Socket
AMD AM2/AM3/FM1/FM2
 
Intel 775
Intel 1150
Intel 1155/1156
 
Intel 1151 / 1151 v2
Intel 1200
AMD AM2/AM3/FM1/FM2
AMD AM4
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
Intel 1151 / 1151 v2
Intel 1200
Вентилятор
Кол-во вентиляторов1 шт1 шт
Диаметр вентилятора92 мм92 мм
Тип подшипникаскольженияскольжения
Минимальные обороты1000 об/мин
Максимальные обороты2400 об/мин2400 об/мин
Регулятор оборотовавто (PWM)отсутствует
Макс. воздушный поток45.4 CFM45 CFM
Статическое давление2.6 мм H2O
Наработка на отказ30 тыс. ч30 тыс. ч
Максимальный TDP140 Вт100 Вт
Выдув воздушного потокавбок (рассеивание)вбок (рассеивание)
Возможность замены
Общее
Источник питания4-pin3-pin
Мин. уровень шума19 дБ
Уровень шума30 дБ30 дБ
Тип креплениядвусторонний (backplate)двусторонний (backplate)
Габариты100x88.4x139.5 мм100x139x88 мм
Высота140 мм139 мм
Вес425 г372 г
Дата добавления на E-Katalogиюль 2013май 2013

Тепловых трубок

Количество тепловых трубок в системе охлаждения

Тепловая трубка представляет собой герметичную конструкцию, в которой находится легкокипящая жидкость. При нагреве одного конца трубки эта жидкость испаряется и конденсируется в другом конце, отбирая таким образом тепло у источника нагрева и передавая его охладителю. В наше время такие приспособления широко применяются в основном в процессорных системах охлаждения (см. «Назначение») — они соединяют между собой подложку, непосредственно контактирующую с CPU, и радиатор активного кулера. Производители подбирают число трубок, ориентируясь на общую производительность кулера (см. «Максимальный TDP»); однако модели со схожими показателями TDP все же могут заметно различаться по данному параметру. В таких случаях стоит учитывать следующее: увеличение числа тепловых трубок повышает эффективность передачи тепла, однако увеличивает также габариты, вес и стоимость всей конструкции.

Что касается количества, то в простейших моделях предусматривается 1 – 2 тепловые трубки, а в наиболее продвинутых и мощных процессорных системах это число может составлять 7 и более.

Контакт теплотрубок

Тип контакта между теплотрубками, предусмотренными в радиаторе системы охлаждения, и охлаждаемыми компонентами (обычно CPU). Подробнее о теплотрубках см. выше, а виды контакта могут быть следующими:

Непрямой. Классический вариант конструкции: тепловые трубки проходят через металлическую (обычно алюминиевую) подошву, которая непосредственно прилегает к поверхности чипа. Достоинством такого контакта является максимально равномерное распределение тепла между трубками, причем независимо от физического размера самого чипа (главное, чтобы он не был крупнее подошвы). В то же время дополнительная деталь между процессором и трубками неизбежно увеличивает тепловое сопротивление и несколько снижает общую эффективность охлаждения. Во многих системах, особенно высококлассных, этот недостаток компенсируется различными конструктивными решениями (прежде всего максимально плотным соединением трубок с подошвой), однако это, в свою очередь, влияет на стоимость.

Прямой. При прямом контакте тепловые трубки прилегают непосредственно к охлаждаемому чипу, без дополнительной подошвы; для этого поверхность трубок с нужной стороны стачивается до плоскости. Благодаря отсутствию промежуточных деталей тепловое сопротивление в местах прилегания трубок получается минимальным, и в то же время сама конструкция радиатора оказывается более простой и недорогой, чем при непрямом контакте. С другой стороны, между тепловым...и трубками имеются зазоры, иногда весьма значительные — в результате поверхность обслуживаемого чипа охлаждается неравномерно. Это отчасти компенсируется наличием подложки (в данном случае она заполняет эти промежутки) и применением термопасты, однако по равномерности отвода тепла прямой контакт все равно неизбежно уступает непрямому. Поэтому данный вариант встречается преимущественно в недорогих кулерах, хотя может применяться и в достаточно производительных решениях.

Материал подложки

Материал, из которого выполнена подложка системы охлаждения — поверхность, непосредственно контактирующая с охлаждаемым компонентом (чаще всего с процессором). Данный параметр особенно важен для моделей с использованием тепловых трубок (см. выше) , хотя он может указываться и для кулеров без этой функции. Варианты же могут быть такими: алюминий, никелированый алюминий, медь, никелированная мель. Подробней о них.

— Алюминий. Традиционный, наиболее распространенный материал подложки. При относительно невысокой стоимости алюминий имеет неплохие характеристики теплопроводности, легко поддается шлифовке (необходимой для плотного прилегания) и хорошо противостоит появлению царапин и других неровностей, а также коррозии. Правда, по эффективности теплоотвода этот материал все же уступает меди — однако это становится заметно в основном в продвинутых системах, требующих максимально высокой теплопроводности.

— Медь. Медь обходится заметно дороже алюминия, однако это компенсируется более высокой теплопроводностью и, соответственно, эффективностью охлаждения. К заметным недостаткам этого металла можно отнести некоторую склонность к коррозии при воздействии влаги и определенных веществ. Поэтому в чистом виде медь используется сравнительно редко — чаще встречаются никелированные подложки (см. ниже).

— Никелированная медь. По...дложка из меди, имеющая дополнительное покрытие из никеля. Такое покрытие увеличивает стойкость к коррозии и царапинам, при этом оно практически не влияет на теплопроводность подложки и эффективность работы. Правда, данная особенность несколько увеличивает цену радиатора, однако встречается она в основном в высококлассных системах охлаждения, где этот момент практически незаметен на фоне общей стоимости устройства.

— Никелированный алюминий. Подложка из алюминия с дополнительным покрытием из никеля. Об алюминии в целом см. выше, а покрытие повышает стойкость радиатора к коррозии, царапинам и появлению неровностей. С другой стороны, оно сказывается на стоимости, притом что на практике для эффективной работы нередко бывает вполне достаточно и чистого алюминия (тем более что этот металл сам по себе весьма устойчив к коррозии). Поэтому данный вариант распространения не получил.

Socket

Тип сокета — разъема для процессора — с которым (которыми) совместима соответствующая система охлаждения.

Разные сокеты различаются не только по совместимости с тем или иным CPU, но и по конфигурации посадочного места для системы охлаждения. Так что, приобретая процессорную систему охлаждения отдельно, стоит убедиться в ее совместимости с разъемом. В наше время выпускаются решения в основном под такие типы сокетов: AMD AM2/AM3/FM1/FM2, AMD AM4, AMD AM5, AMD TR4/TRX4, Intel 775, Intel 1150, Intel 1155/1156, Intel 1366, Intel 2011/ 2011 v3, Intel 2066, Intel 1151 / 1151 v2, Intel 1200, Intel 1700.

Минимальные обороты

Наименьшие обороты, на которых способен работать вентилятор системы охлаждения. Указываются только для моделей, имеющих регулятор оборотов (см. ниже).

Чем ниже минимальные обороты (при том же максимуме) — тем шире диапазон регулировки скорости и тем сильнее можно замедлить вентилятор, когда высокая производительность не нужна (такое замедление позволяет снизить потребление энергии и уровень шума). С другой стороны, обширный диапазон соответствующим образом сказывается на стоимости.

Регулятор оборотов

Авто (PWM). Тип автоматического регулятора, применяемый в системах охлаждения для процессоров. Принцип такой регулировки заключается в том, что автоматика отслеживает текущую нагрузку на CPU и подстраивает под нее режим работы вентилятора. Таким образом, система охлаждения работает «на опережение»: она фактически предотвращает повышение температуры, а не устраняет его (в отличие от описанного ниже терморегулятора). Недостатки подобной автоматики — высокая стоимость и дополнительные требования к совместимости: функция PWM должна поддерживаться материнской платой, а энергия на вентилятор должна подаваться через разъем 4-pin (см. «Питание»).

— Ручной. Ручной регулятор, позволяющий выставить скорость вращения по желанию пользователя. Главными его достоинствами являются как возможность произвольной подстройки, так и надёжность: автоматика не всегда реагирует оптимально, и в производительных системах пользователю иногда лучше брать управление в свои руки. С другой стороны, ручное управление дороже, а также сложнее в применении — оно требует от пользователя повышенного внимания к состоянию системы, а при невнимательном отношении значительно повышается вероятность перегрева.

— Ручной/авто. Сочетание вышеописанных двух систем: основная регулировка осуществляется за счёт PWM, а ручной регулятор служит для ограничения максимальной скорости вращения. Достаточно удобный и продвинутый вариант, расширяющий во...зможности авторегулировки и при этом не требующий постоянного контроля температуры, как при чисто ручной настройке. Правда, и обходится такой функционал недёшево.

— Переходник (резистор). В этом случае регулировка оборотов производится за счёт снижения напряжения, подаваемого на вентилятор. Для этого он подключается к блоку питания через переходник-резистор. Это своеобразная альтернатива ручной регулировке: переходники стоят недорого. С другой стороны, они гораздо менее удобны: единственный способ изменить скорость вращения при такой регулировке — собственно поменять переходник, а для этого приходится отключать систему и лезть в корпус.

— Терморегулятор. Автоматическая регулировка оборотов по данным с датчика, измеряющего температуру охлаждаемого компонента: при повышении температуры интенсивность работы также повышается, и наоборот. Такие системы проще описанных выше PWM, к тому же могут применяться практически для любых компонентов системы, не только для процессора. С другой стороны, они имеют бОльшую инерцию и время реакции: если PWM предотвращает нагрев заранее, то терморегулятор срабатывает от уже случившегося повышения температуры.

Макс. воздушный поток

Максимальный воздушный поток, который может создать вентилятор системы охлаждения; измеряется в CFM — кубических футах в минуту.

Чем выше число CFM — тем эффективнее вентилятор. С другой стороны, высокая производительность требует либо большого диаметра (что сказывается на габаритах и стоимости), либо высокой скорости (а она повышает уровень шума и вибраций). Поэтому при выборе имеет смысл не гнаться за максимальным воздушным потоком, а воспользоваться специальными формулами, позволяющими рассчитать необходимое число CFM в зависимости от типа и мощности охлаждаемого компонента и других параметров. Такие формулы можно найти в специальных источниках. Что же касается конкретных чисел, то в наиболее скромных системах производительность не превышает 30 CFM, а в наиболее мощных может составлять свыше 80 CFM.

Также стоит учитывать, что фактическое значение воздушного потока на наибольших оборотах обычно ниже заявленного максимального; подробнее см. «Статическое давление».

Статическое давление

Максимальное статическое давление воздуха, создаваемое вентилятором при работе.

Данный параметр измеряется следующим образом: если вентилятор установить на глухой трубе, откуда нет выхода воздуха, и включить на вдув, то достигнутое в трубе давление и будет соответствовать статическому. На практике же этот параметр определяет общую эффективность работы вентилятора: чем выше статическое давление (при прочих равных) — тем проще вентилятору «протолкнуть» нужный объем воздуха через пространство с высоким сопротивлением, например, через узкие прорези радиатора или через набитый комплектующими корпус.

Также данный параметр используется при некоторых специфических вычислениях, однако эти вычисления довольно сложны и рядовому пользователю, как правило, не нужны — они связаны с нюансами, актуальными в основном для энтузиастов-компьютерщиков. Подробнее об этом можно прочитать в специальных источниках.

Максимальный TDP

Максимальный TDP, обеспечиваемый системой охлаждения. Отметим, что данный параметр указывается только для решений, оснащенных радиаторами (см. «Тип»); для отдельно выполненных вентиляторов эффективность определяется другими параметрами, прежде всего значениями воздушного потока (см. выше).

TDP можно описать как количество тепла, которое система охлаждения способна отвести от обслуживаемого компонента. Соответственно, для нормальной работы всей системы нужно, чтобы TDP системы охлаждения был не ниже тепловыделения этого компонента (данные по тепловыделению обычно указываются в подробных характеристиках комплектующих). А лучше всего подбирать охладители с запасом по мощности хотя бы в 20 – 25 % — это даст дополнительную гарантию на случай форсированных режимов работы и нештатных ситуаций (в том числе засорения корпуса и снижения эффективности воздухообмена).

Что касается конкретных чисел, то наиболее скромные современные системы охлаждения обеспечивают TDP до 100 Вт, наиболее продвинутые — до 250 Вт и даже выше.
Thermaltake Contac 21 часто сравнивают