Рус  |  Укр
Украина
Каталог   /   Компьютерная техника   /   Комплектующие   /  Системы охлаждения
Системы охлаждения 
Популярные модели→ Сравнить в таблице
ID-COOLING SE-226-XT ARGB
от 1 569 грн.
активный кулер, на процессор, AMD: AM4, Intel: 1150, 1155/1156, 2011/2011 v3, 2066, 1151/1151 v2, 1200, 1700, вентилятор: 120 мм, 1 шт, 2000 об/мин, макс. TDP 250 Вт, с подсветкой, крепление backplate
Be quiet Pure Wings 2 PWM 120
от 299 грн.
вентилятор, на корпус, вентилятор: 120 мм, 1 шт, 1500 об/мин, тихий (<20 дБ)
Deepcool GAMMAXX 300
от 479 грн.
активный кулер, на процессор, AMD: AM2/AM3/FM1/FM2, AM4, Intel: 775, 1150, 1155/1156, 1151/1151 v2, 1200, вентилятор: 120 мм, 1 шт, 1600 об/мин, макс. TDP 130 Вт
Noctua NH-U14S
от 2 470 грн.
активный кулер, на процессор, AMD: AM2/AM3/FM1/FM2, Intel: 1150, 1155/1156, 2011/2011 v3, 2066, 1151/1151 v2, 1200, вентилятор: 140 мм, 1 шт, 1500 об/мин, макс. TDP 220 Вт, крепление backplate
Gigabyte AORUS WATERFORCE X 240
от 5 999 грн.
водяное охлаждение, на процессор, AMD: AM4, TR4, Intel: 1150, 1155/1156, 1366, 2011/2011 v3, 2066, 1151/1151 v2, 1200, 1700, вентилятор: 120 мм, 2 шт, 2500 об/мин, с подсветкой, крепление backplate
Noctua NH-D15
от 3 000 грн.
активный кулер, на процессор, AMD: AM2/AM3/FM1/FM2, AM4, Intel: 775, 1150, 1155/1156, 2011/2011 v3, 2066, 1151/1151 v2, 1200, вентилятор: 140 мм, 2 шт, 1500 об/мин, макс. TDP 220 Вт, крепление backplate
Be quiet Silent Wings 3 120 PWM
от 589 грн.
вентилятор, на корпус, вентилятор: 120 мм, 1 шт, 1450 об/мин, тихий (<20 дБ)
ID-COOLING XF-12025-SD-W
от 129 грн.
вентилятор, на корпус, вентилятор: 120 мм, 1 шт, 1800 об/мин
ID-COOLING SE-213V3-R
от 399 грн.
активный кулер, на процессор, AMD: AM2/AM3/FM1/FM2, AM4, Intel: 1150, 1155/1156, 1151/1151 v2, 1200, вентилятор: 120 мм, 1 шт, 1600 об/мин, тихий (<20 дБ), макс. TDP 130 Вт, с подсветкой
Be quiet Dark Rock Pro 4
от 2 499 грн.
активный кулер, на процессор, AMD: AM2/AM3/FM1/FM2, AM4, Intel: 1150, 1155/1156, 1366, 2011/2011 v3, 2066, 1151/1151 v2, 1200, вентилятор: 135 мм, 2 шт, 1200 об/мин, макс. TDP 250 Вт, крепление backplate
ID-COOLING SE-223 BASIC
от 588 грн.
активный кулер, на процессор, AMD: AM4, Intel: 1150, 1155/1156, 2011/2011 v3, 2066, 1151/1151 v2, 1200, вентилятор: 120 мм, 1 шт, 1600 об/мин, тихий (<20 дБ), макс. TDP 130 Вт, крепление backplate
Aerocool Frost 12 PWM
от 135 грн.
вентилятор, на корпус, вентилятор: 120 мм, 1 шт, 1500 об/мин, с подсветкой
Be quiet Pure Rock 2 Black
от 1 199 грн.
активный кулер, на процессор, AMD: AM2/AM3/FM1/FM2, AM4, Intel: 1150, 1155/1156, 2011/2011 v3, 2066, 1151/1151 v2, 1200, вентилятор: 120 мм, 1 шт, 1500 об/мин, макс. TDP 150 Вт, крепление backplate
Deepcool GAMMAXX 400 V2
от 765 грн.
активный кулер, на процессор, AMD: AM2/AM3/FM1/FM2, AM4, Intel: 1150, 1155/1156, 1366, 1151/1151 v2, 1200, вентилятор: 120 мм, 1 шт, 1650 об/мин, макс. TDP 180 Вт, с подсветкой, крепление backplate
Возможно, меня заинтересует

Cтатьи, обзоры, полезные советы

Все материалы
Отзывы о брендах из раздела системы охлаждения
Рейтинг брендов из раздела систем охлаждения составленный по отзывам и оценкам посетителей сайта
01.2022
Рейтинг систем охлаждения (январь)
Рейтинг популярности систем охлаждения основан на комплексной статистике по проявленному интересу интернет-аудитории
ТОП-5 серьезных башенных кулеров для центрального процессора
Пятерка мощных, тихих и высокоэффективных кулеров для охлаждения мощного CPU
Бюджетный игровой ПК для FIFA 22, Forza Horizon 5 и Tales of Arise
Процессор Core i3, видеокарта на 2 ГБ и все, что к ним прилагается
Башни и башенки: 5 процессорных кулеров от мала до велика
Насколько крупный охладитель нужен для процессора вашего ПК?
Мощный игровой ПК для Battlefield 2042, Far Cry 6 и CoD Vanguard
Процессор Core i5, видеокарта Radeon на 8 ГБ, 16 ГБ ОЗУ и SSD на 1 ТБ

Системы охлаждения: характеристики, типы, виды

Назначение

Компонент компьютерной системы, для которого предназначена система охлаждения.

В наше время наибольшее распространение получили две разновидности СО — для процессора и для корпуса. Выпускаются и другие решения — для видеокарт, оперативной памяти, жестких дисков M.2 SSD и т. п.; однако в большинстве случае подобные компоненты компьютера либо очень редко требуют специальных систем охлаждения (характерный пример — жесткие диски), либо оснащаются ими изначально (видеокарты).

СО для процессоров чаще всего имеют формат активного кулера либо системы водяного охлаждения (см. «Тип»). При этом и в том, и в другом случае в конструкции обычно предусматривается подложка — контактная пластина, прилегающая непосредственно к процессору. Тепло от подложки передается к блоку охлаждения при помощи тепловых трубок (в кулерах) или контура с циркулирующим теплоносителем (в жидкостных системах). Для процессоров выпускаются также радиаторы — они рассчитаны в основном на маломощные CPU с низким тепловыделением; при установке такого компонента нужно уделять особое внимание качеству охлаждения корпуса.

В свою очередь, СО для корпусов делаются исключительно в виде вентиляторов, так как их задача — не охлаждать строго определенный компонент, а удалять горячий воздух из всего объема системного блока.

Тип

Вентилятор. Классический вентилятор — моторчик с лопастями, обеспечивающий поток воздуха; также сюда входят комплекты из нескольких вентиляторов. В любом случае не стоит путать такие приспособления с кулерами (см. ниже) — вентиляторы не имеют радиаторов. Практически все решения этого типа предназначены для корпусов (см. «Назначение»), лишь единичные модели рассчитаны на «обдув» жестких дисков или чипсетов.

Радиатор. Конструкция из теплопроводящего материала, имеющая специальную ребристую форму. Такая форма обеспечивает большую площадь соприкосновения с воздухом, как следствие — хорошую теплоотдачу. Радиаторы не потребляют энергии и работают абсолютно бесшумно, однако не отличаются эффективностью. Поэтому в чистом виде они встречаются крайне редко, а предназначаются такие модели либо для маломощных компонентов ПК с низким тепловыделением (энергоэффективные процессоры, жесткие диски и т.п.), либо для сборки активного кулера (см. ниже) из отдельно купленных вентилятора и радиатора (этот вариант встречается среди решений под видеокарты).

Активный кулер. Приспособление в виде радиатора с установленным на нем вентилятором; при этом во многих моделях радиатор не контактирует с охлаждаемым компонентом напрямую, а соединяется с ним при помощи тепловых трубок, при этом выдув воздуха осуществяется вбок (так называемая башенная компоновка, особенно популярная в с...истемах для CPU; подробнее см. «Выдув воздушного потока»). В любом случае подобные конструкции, с одной стороны, сравнительно просты и недороги, с другой — довольно эффективны, благодаря чему они являются чрезвычайно популярным типом СО. В частности, именно в данном формате выпускается большинство решений для процессоров (см. «Назначение»), а в целом кулеры могут применяться практически для любого компонента системы, за исключением корпуса.

Водяное охлаждение. Системы водяного охлаждения состоят из трех основных частей: ватерблока, непосредственно контактирующего с охлаждаемым компонентом (обычно процессором), внешнего охладителя, а также помпы (отдельной или встроенной в охладитель). Эти компоненты соединяются шлангами, по которым циркулирует вода (или другой аналогичный теплоноситель) — она и обеспечивает перенес тепла. А охлаждающий блок обычно представляет собой кулер — систему из вентиляторов и радиаторов, которая рассеивает тепловую энергию в окружающем воздухе. Водяные системы заметно эффективнее активных кулеров (см. выше), они подходят даже для очень мощных и «горячих» CPU, с которым традиционные кулеры справляются с трудом. С другой стороны, данный тип охлаждения довольно громоздок и сложен в монтаже, да и обходится недешево.

— Комплект СЖО. Комплект для самостоятельной сборки системы жидкостного (водяного) охлаждения. Отличие таких решений от обычного водяного охлаждения (см. выше) заключается в том, что в данном случае вся система поставляется в виде набора деталей, из которого пользователь должен сам собрать готовую СЖО (тогда как в традиционных водяных системах дело обычно ограничивается подключением шлангов и заправкой теплоносителя). Подобный формат заметно расширяет возможности пользователя в плане монтажа: можно самостоятельно выбрать отдельные нюансы компоновки, заменить некоторые штатные детали, дополнить конструкцию сторонними элементами и т. п. С другой стороны, сама установка получается намного более сложной, чем у традиционных водяных систем. Поэтому комплектов СЖО выпускается очень немного, а рассчитаны они в основном на энтузиастов-моддеров, которые любят экспериментировать с оформлением и конструкцией своих ПК.

Двухбашенная конструкция

Особенность, встречающаяся в отдельных активных кулерах для процессора (см. «Назначение»).

О башенной компоновке в целом см. «Выдув возлушного потока» ниже. А двухбашенная конструкция означает, что кулер имеет два рабочих блока — то есть два вентилятора и два радиатора. Соответственно, и тепловых трубок в конструкции больше, чем в однобашенных моделях — как минимум их 4, а чаще 5 – 6 или даже больше. Подобная компоновка может значительно увеличить эффективность охлаждения; с другой стороны, она также заметно сказывается на габаритах, весе и цене.

Вентиляторов

Количество вентиляторов в конструкции системы охлаждения. Большее количество вентиляторов обеспечивает более высокую эффективность (при прочих равных); с другой стороны, габариты и шум, производимый при работе, также возрастают соответственно. Кроме того, отметим, что при прочих равных меньшее количество крупных вентиляторов считается более продвинутым вариантом, чем большое количество маленьких; подробнее см. «Диаметр вентилятора».

Тепловых трубок

Количество тепловых трубок в системе охлаждения

Тепловая трубка представляет собой герметичную конструкцию, в которой находится легкокипящая жидкость. При нагреве одного конца трубки эта жидкость испаряется и конденсируется в другом конце, отбирая таким образом тепло у источника нагрева и передавая его охладителю. В наше время такие приспособления широко применяются в основном в процессорных системах охлаждения (см. «Назначение») — они соединяют между собой подложку, непосредственно контактирующую с CPU, и радиатор активного кулера. Производители подбирают число трубок, ориентируясь на общую производительность кулера (см. «Максимальный TDP»); однако модели со схожими показателями TDP все же могут заметно различаться по данному параметру. В таких случаях стоит учитывать следующее: увеличение числа тепловых трубок повышает эффективность передачи тепла, однако увеличивает также габариты, вес и стоимость всей конструкции.

Что касается количества, то в простейших моделях предусматривается 1 – 2 тепловые трубки, а в наиболее продвинутых и мощных процессорных системах это число может составлять 7 и более.

Контакт теплотрубок

Тип контакта между теплотрубками, предусмотренными в радиаторе системы охлаждения, и охлаждаемыми компонентами (обычно CPU). Подробнее о теплотрубках см. выше, а виды контакта могут быть следующими:

Непрямой. Классический вариант конструкции: тепловые трубки проходят через металлическую (обычно алюминиевую) подошву, которая непосредственно прилегает к поверхности чипа. Достоинством такого контакта является максимально равномерное распределение тепла между трубками, причем независимо от физического размера самого чипа (главное, чтобы он не был крупнее подошвы). В то же время дополнительная деталь между процессором и трубками неизбежно увеличивает тепловое сопротивление и несколько снижает общую эффективность охлаждения. Во многих системах, особенно высококлассных, этот недостаток компенсируется различными конструктивными решениями (прежде всего максимально плотным соединением трубок с подошвой), однако это, в свою очередь, влияет на стоимость.

Прямой. При прямом контакте тепловые трубки прилегают непосредственно к охлаждаемому чипу, без дополнительной подошвы; для этого поверхность трубок с нужной стороны стачивается до плоскости. Благодаря отсутствию промежуточных деталей тепловое сопротивление в местах прилегания трубок получается минимальным, и в то же время сама конструкция радиатора оказывается более простой и недорогой, чем при непрямом контакте. С другой стороны, между тепловым...и трубками имеются зазоры, иногда весьма значительные — в результате поверхность обслуживаемого чипа охлаждается неравномерно. Это отчасти компенсируется наличием подложки (в данном случае она заполняет эти промежутки) и применением термопасты, однако по равномерности отвода тепла прямой контакт все равно неизбежно уступает непрямому. Поэтому данный вариант встречается преимущественно в недорогих кулерах, хотя может применяться и в достаточно производительных решениях.

Материал радиатора

Медь. Медь обладает высокой теплопроводностью и обеспечивает эффективный отвод тепла, однако стоят такие радиаторы довольно дорого.

— Алюминий. Алюминий дешевле меди, однако его теплопроводность, а соответственно, и эффективность несколько ниже.

— Алюминий/медь. Комбинированная конструкция — как правило, из алюминия делается радиатор, а из меди — тепловые трубки. Это сочетание позволяет добиться хорошей эффективности без значительного роста стоимости.

Материал подложки

Материал, из которого выполнена подложка системы охлаждения — поверхность, непосредственно контактирующая с охлаждаемым компонентом (чаще всего с процессором). Данный параметр особенно важен для моделей с использованием тепловых трубок (см. выше) , хотя он может указываться и для кулеров без этой функции. Варианты же могут быть такими: алюминий, никелированый алюминий, медь, никелированная мель. Подробней о них.

— Алюминий. Традиционный, наиболее распространенный материал подложки. При относительно невысокой стоимости алюминий имеет неплохие характеристики теплопроводности, легко поддается шлифовке (необходимой для плотного прилегания) и хорошо противостоит появлению царапин и других неровностей, а также коррозии. Правда, по эффективности теплоотвода этот материал все же уступает меди — однако это становится заметно в основном в продвинутых системах, требующих максимально высокой теплопроводности.

— Медь. Медь обходится заметно дороже алюминия, однако это компенсируется более высокой теплопроводностью и, соответственно, эффективностью охлаждения. К заметным недостаткам этого металла можно отнести некоторую склонность к коррозии при воздействии влаги и определенных веществ. Поэтому в чистом виде медь используется сравнительно редко — чаще встречаются никелированные подложки (см. ниже).

— Никелированная медь. По...дложка из меди, имеющая дополнительное покрытие из никеля. Такое покрытие увеличивает стойкость к коррозии и царапинам, при этом оно практически не влияет на теплопроводность подложки и эффективность работы. Правда, данная особенность несколько увеличивает цену радиатора, однако встречается она в основном в высококлассных системах охлаждения, где этот момент практически незаметен на фоне общей стоимости устройства.

— Никелированный алюминий. Подложка из алюминия с дополнительным покрытием из никеля. Об алюминии в целом см. выше, а покрытие повышает стойкость радиатора к коррозии, царапинам и появлению неровностей. С другой стороны, оно сказывается на стоимости, притом что на практике для эффективной работы нередко бывает вполне достаточно и чистого алюминия (тем более что этот металл сам по себе весьма устойчив к коррозии). Поэтому данный вариант распространения не получил.

Тип крепления

Защелки. Наиболее простой и удобный тип крепления, в частности из-за того, что не требует использования дополнительных инструментов. Кроме того, для установки на защелки не нужно снимать материнскую плату.

Двусторонний (backplate). Этот тип крепления используется в наиболее мощных и, как следствие — тяжелых и крупногабаритных системах охлаждения. Его особенностью является наличие пластины, устанавливаемой с противоположной стороны материнской платы — эта пластина предназначена для защиты от повреждений и для того, чтобы плата не прогибалась под весом конструкции.

Болты. Крепление на классических болтах. Считается несколько надежнее, чем защелки (см. выше), однако менее удобно, т.к. снять и установить систему охлаждения можно только при наличии отвёртки. На сегодняшний день болты используются преимущественно для крепления корпусных вентиляторов, а также систем охлаждения для оперативной памяти и жёстких дисков (см. «Тип», «Назначение»).

Силиконовые крепления. Главным достоинством силиконовых креплений является хорошее поглощение вибраций, что заметно снижает уровень шума по сравнению с аналогичными системами, использующими другие типы фиксаторов. С другой стороны, силикон несколько менее надежен, чем болты, поэтому в комплекте обычно поставляются оба типа креплений, и пользов...атель сам выбирает, какие использовать.

— Клейкая лента. Крепление при помощи клейкой ленты (скотча), обычно двусторонней. Главными достоинствами такого крепления являются простота в использовании и компактность. С другой стороны, снять такую систему охлаждения затруднительно. Кроме того, клейкая лента уступает по теплопроводности той же термопасте.

Пространство для ОЗУ

Высота пространства для ОЗУ (оперативной памяти), предусмотренного конструкцией системы охлаждения.

Такое пространство встречается преимущественно в процессорных системах (см. «Назначение»). Современные кулеры для CPU могут иметь весьма значительные габариты и при установке часто перекрывают ближайшие к процессору слоты для планок оперативной памяти. Избежать этого можно, сделав конструкцию достаточно узкой — однако это, в свою очередь, отрицательно сказывается на эффективности. Поэтому многие производители применяют другой вариант — не ограничивают ширину кулера, однако располагают его компоненты на большой высоте, позволяя поместить под ними планки RAM определенной высоты. Иногда в нижней части радиатора даже делается специальный вырез, который еще более увеличивает доступное пространство. А в данном пункте как раз и указывается максимальная высота планки, которая может разместиться под системой охлаждения.

Socket

Тип сокета — разъема для процессора — с которым (которыми) совместима соответствующая система охлаждения.

Разные сокеты различаются не только по совместимости с тем или иным CPU, но и по конфигурации посадочного места для системы охлаждения. Так что, приобретая процессорную систему охлаждения отдельно, стоит убедиться в ее совместимости с разъемом. В наше время выпускаются решения в основном под такие типы сокетов: AMD AM2/AM3/FM1/FM2, AMD AM4, AMD TR4/TRX4, Intel 775, Intel 1150, Intel 1155/1156, Intel 1366, Intel 2011/ 2011 v3, Intel 2066, Intel 1151 / 1151 v2, Intel 1200, Intel 1700.

Совместимость с NVIDIA

Модели видеокарт nVidia, с которыми гарантированно совместима система охлаждения, имеющая соответствующее назначение (см. выше). Устанавливать охлаждение на другие видеокарты нежелательно: хотя это может быть технически возможно, однако корректная работа в таком случае не гарантирована.

Совместимость с AMD Radeon

Модели видеокарт AMD Radeon, с которыми совместима система охлаждения, имеющая соответствующее назначение (см. выше). Устанавливать охлаждение на другие видеокарты нежелательно: хотя это может быть технически возможно, однако корректная работа в таком случае не гарантирована.

Диаметр вентилятора

Диаметр вентилятора (вентиляторов), используемых в системе охлаждения.

В целом более крупные вентиляторы считаются более продвинутыми, чем небольшие: они позволяют создать мощный поток воздуха при сравнительно невысоких оборотах и небольшом уровне шума. С другой стороны, крупный диаметр означает большие габариты, вес и цену. Что касается конкретных цифр, то модели на 40 мм и 60 мм считаются миниатюрными, 80 мм и 92 мм — средними, 120 мм и 135/140 мм — крупными, а в самых мощных корпусных системах встречаются даже вентиляторы на 200 мм.

Тип подшипника

Тип подшипника, используемого в вентиляторе (вентиляторах) системы охлаждения.

Подшипник — это деталь между вращающейся осью вентилятора и неподвижным основанием, которая поддерживает ось и снижает трение. В современных вентиляторах встречаются такие типы подшипников:

Скольжения. Действие таких подшипников основано на прямом контакте между двумя сплошными поверхностями, тщательно отполированными для снижения трения. Подобные приспособления просты, надежны и долговечны, однако эффективность их достаточно невысока — качение, а тем более гидродинамический и магнитный принцип работы (см. ниже) обеспечивают значительно меньшее трение.

Качения. Также называются «шарикоподшипниками», так как «посредниками» между осью вращения и неподвижным основанием являются шарики (реже — цилиндрические ролики), закрепленные в специальном кольце. При вращении оси такие шарики катятся между ней и основанием, за счет чего сила трения получается очень невысокой — заметно ниже, чем в подшипниках скольжения. С другой стороны, конструкция получается более дорогой и сложной, а по надежности она несколько уступает как тем же подшипникам скольжения, так и более продвинутым гидродинамическим приспособлениям (см. ниже). Поэтому, хотя подшипники качения в наше время достаточно широко распространены, однако в целом они встречаются заметно реже упомянутых разновидностей.

Гидродинамический. Подшипники этого типа заполнены специальной жидкостью; при вращении она создаёт прослойку, по которой скользит подвижная часть подшипника. Таким образом удаётся избежать непосредственного контакта между твёрдыми поверхностями и значительно снизить трение по сравнению с предыдущими типами. Также такие подшипники тихо работают и весьма надёжны. Из их недостатков можно отметить сравнительно высокую стоимость, однако на практике этот момент нередко оказывается незаметным на фоне цены всей системы. Поэтому данный вариант в наше время чрезвычайно популярен, его можно встретить в системах охлаждения всех уровней — от бюджетных до продвинутых.

Магнитное центрирование. Подшипники, основанные на принципе магнитной левитации: вращающаяся ось «подвешена» в магнитном поле. Таким образом удаётся (как и в гидродинамических) избежать контакта между твёрдыми поверхностями и ещё больше снизить трение. Считаются наиболее продвинутым типом подшипников, надёжны и бесшумны, однако стоят дорого.

Минимальные обороты

Наименьшие обороты, на которых способен работать вентилятор системы охлаждения. Указываются только для моделей, имеющих регулятор оборотов (см. ниже).

Чем ниже минимальные обороты (при том же максимуме) — тем шире диапазон регулировки скорости и тем сильнее можно замедлить вентилятор, когда высокая производительность не нужна (такое замедление позволяет снизить потребление энергии и уровень шума). С другой стороны, обширный диапазон соответствующим образом сказывается на стоимости.

Максимальные обороты

Наибольшие обороты, на которых способен работать вентилятор системы охлаждения; для моделей без регулятора оборотов (см. ниже) в данном пункте указывается штатная скорость вращения. В самых «медленных» современных вентиляторах максимальная скорость не превышает 1000 об/мин, в самых «быстрых» может составлять до 2500 об/мин и даже более .

Отметим, что данный параметр плотно связан с диаметром вентилятора (см. выше): чем меньше диаметр, тем выше должны быть обороты для достижения нужных значений воздушного потока. При этом скорость вращения напрямую влияет на уровень шума и вибраций. Поэтому считается, что нужный объем воздуха лучше всего обеспечивать крупными и сравнительно «медленными» вентиляторами; а «быстрые» небольшие модели имеет смысл применять там, где компактность имеет решающее значение. Если же сравнивать по скорости модели одинакового размера, то более высокие обороты положительно сказываются на производительности, однако повышают не только уровень шума, но также цену и энергопотребление.

Регулятор оборотов

Авто (PWM). Тип автоматического регулятора, применяемый в системах охлаждения для процессоров. Принцип такой регулировки заключается в том, что автоматика отслеживает текущую нагрузку на CPU и подстраивает под нее режим работы вентилятора. Таким образом, система охлаждения работает «на опережение»: она фактически предотвращает повышение температуры, а не устраняет его (в отличие от описанного ниже терморегулятора). Недостатки подобной автоматики — высокая стоимость и дополнительные требования к совместимости: функция PWM должна поддерживаться материнской платой, а энергия на вентилятор должна подаваться через разъем 4-pin (см. «Питание»).

— Ручной. Ручной регулятор, позволяющий выставить скорость вращения по желанию пользователя. Главными его достоинствами являются как возможность произвольной подстройки, так и надёжность: автоматика не всегда реагирует оптимально, и в производительных системах пользователю иногда лучше брать управление в свои руки. С другой стороны, ручное управление дороже, а также сложнее в применении — оно требует от пользователя повышенного внимания к состоянию системы, а при невнимательном отношении значительно повышается вероятность перегрева.

— Ручной/авто. Сочетание вышеописанных двух систем: основная регулировка осуществляется за счёт PWM, а ручной регулятор служит для ограничения максимальной скорости вращения. Достаточно удобный и продвинутый вариант, расширяющий во...зможности авторегулировки и при этом не требующий постоянного контроля температуры, как при чисто ручной настройке. Правда, и обходится такой функционал недёшево.

— Переходник (резистор). В этом случае регулировка оборотов производится за счёт снижения напряжения, подаваемого на вентилятор. Для этого он подключается к блоку питания через переходник-резистор. Это своеобразная альтернатива ручной регулировке: переходники стоят недорого. С другой стороны, они гораздо менее удобны: единственный способ изменить скорость вращения при такой регулировке — собственно поменять переходник, а для этого приходится отключать систему и лезть в корпус.

— Терморегулятор. Автоматическая регулировка оборотов по данным с датчика, измеряющего температуру охлаждаемого компонента: при повышении температуры интенсивность работы также повышается, и наоборот. Такие системы проще описанных выше PWM, к тому же могут применяться практически для любых компонентов системы, не только для процессора. С другой стороны, они имеют бОльшую инерцию и время реакции: если PWM предотвращает нагрев заранее, то терморегулятор срабатывает от уже случившегося повышения температуры.

Макс. воздушный поток

Максимальный воздушный поток, который может создать вентилятор системы охлаждения; измеряется в CFM — кубических футах в минуту.

Чем выше число CFM — тем эффективнее вентилятор. С другой стороны, высокая производительность требует либо большого диаметра (что сказывается на габаритах и стоимости), либо высокой скорости (а она повышает уровень шума и вибраций). Поэтому при выборе имеет смысл не гнаться за максимальным воздушным потоком, а воспользоваться специальными формулами, позволяющими рассчитать необходимое число CFM в зависимости от типа и мощности охлаждаемого компонента и других параметров. Такие формулы можно найти в специальных источниках. Что же касается конкретных чисел, то в наиболее скромных системах производительность не превышает 25 CFM, а в наиболее мощных может составлять до 75 CFM и даже более.

Также стоит учитывать, что фактическое значение воздушного потока на наибольших оборотах обычно ниже заявленного максимального; подробнее см. «Статическое давление».

Статическое давление

Максимальное статическое давление воздуха, создаваемое вентилятором при работе.

Данный параметр измеряется следующим образом: если вентилятор установить на глухой трубе, откуда нет выхода воздуха, и включить на вдув, то достигнутое в трубе давление и будет соответствовать статическому. На практике же этот параметр определяет общую эффективность работы вентилятора: чем выше статическое давление (при прочих равных) — тем проще вентилятору «протолкнуть» нужный объем воздуха через пространство с высоким сопротивлением, например, через узкие прорези радиатора или через набитый комплектующими корпус.

Также данный параметр используется при некоторых специфических вычислениях, однако эти вычисления довольно сложны и рядовому пользователю, как правило, не нужны — они связаны с нюансами, актуальными в основном для энтузиастов-компьютерщиков. Подробнее об этом можно прочитать в специальных источниках.

Наработка на отказ

Общее время, которое вентилятор системы охлаждения способен гарантированно проработать до выхода из строя. Отметим, что при исчерпании этого времени устройство не обязательно сломается — многие современные вентиляторы имеют значительный запас прочности и способны проработать ещё какой-то период. В то же время оценивать общую долговечность системы охлаждения стоит именно по данному параметру.

Максимальный TDP

Максимальный TDP, обеспечиваемый системой охлаждения. Отметим, что данный параметр указывается только для решений, оснащенных радиаторами (см. «Тип»); для отдельно выполненных вентиляторов эффективность определяется другими параметрами, прежде всего значениями воздушного потока (см. выше).

TDP можно описать как количество тепла, которое система охлаждения способна отвести от обслуживаемого компонента. Соответственно, для нормальной работы всей системы нужно, чтобы TDP системы охлаждения был не ниже тепловыделения этого компонента (данные по тепловыделению обычно указываются в подробных характеристиках комплектующих). А лучше всего подбирать охладители с запасом по мощности хотя бы в 20 – 25 % — это даст дополнительную гарантию на случай форсированных режимов работы и нештатных ситуаций (в том числе засорения корпуса и снижения эффективности воздухообмена).

Что касается конкретных чисел, то наиболее скромные современные системы охлаждения обеспечивают TDP до 100 Вт, наиболее продвинутые — до 250 Вт и даже выше.

Выдув воздушного потока

Направление, в котором из активного кулера (см. «Тип») выходит поток воздуха.

Данный параметр актуален прежде всего для моделей, используемых с процессорами, варианты же могут быть такими:

Вбок (рассеивание). Формат работы, характерный для кулеров так называемой башенной конструкции. В таких моделях вентилятор установлен перпендикулярно подложке, контактирующей с процессором, благодаря чему воздушный поток движется параллельно материнской плате. Это обеспечивает максимальную эффективность: нагретый воздух не возвращается к процессору и другим компонентам системы, а рассеивается в корпусе (и практически сразу выходит наружу, если в компьютере есть хотя бы один корпусной вентилятор). Главный недостаток данного варианта — большая высота конструкции, которая может затруднить ее размещение в некоторых системниках. Однако в большинстве случаев этот момент не является принципиальным — особенно если речь идет о мощной системе охлаждения, рассчитанной на продвинутую систему с производительным «горячим» процессором. Так что именно боковое рассеивание в наше время является наиболее популярным вариантом — особенно в кулерах с максимальным TDP 150 Вт и выше (хотя и более скромные модели нередко используют данную компоновку).

Вниз (на материнку). Подобный формат работы позволяет «уложить» вентилятор с радиатором плашмя на материнскую плату, заметно уменьшив высоту всего кулера (по сравн...ению с моделями, использующими боковой выдув). С другой стороны, данный формат работы не отличается эффективностью — ведь прежде чем рассеяться по корпусу, горячий воздух снова обдувает плату с процессором. Так что в наше время данный вариант встречается сравнительно редко, причем в основном в маломощных кулерах с допустимым TDP до 150 Вт. А обращать внимание на подобные модели стоит в основном тогда, когда пространства в корпусе немного и небольшая высота кулера более важна, чем высокая эффективность.

Возможность замены

Возможность заменить штатный вентилятор силами самого пользователя — без обращения в сервисный центр или к специалистам-ремонтникам. Максимум, что может потребоваться для такой процедуры — простейшие инструменты вроде отвертки; иногда они даже изначально входят в комплект системы охлаждения.

Вентилятор, как самая подвижная часть любой системы охлаждения, более других частей склонен к поломкам и сбоям. В подобных случаях дешевле (а чаще всего — и разумнее) заменить лишь эту часть, а не покупать целую новую систему. Также, при желании, можно поменять и исправный вентилятор — например, на более мощный или менее шумный.

Подсветка

Наличие собственной подсветки в конструкции системы охлаждения.

Подсветка выполняет чисто эстетическую функцию — она придает устройству стильный внешний вид, хорошо сочетающийся с другими компонентами в оригинальном дизайне. Благодаря этому подобные системы охлаждения собенно ценятся геймерами и любителями внешнего моддинга ПК — тем более что свет освещения может быть разным, а в наиболее продвинутых моделях даже предусматривается синхронизация подсветки с другими компонентами (см. ниже). С другой стороны, на эффективность и рабочие характеристики данная функция не влияет, а на общей стоимости — неизбежно сказывается, иногда весьма заметно. Поэтому, если внешний вид не играет для вас принципиальной роли — оптимальным выбором, скорее всего, станет система охлаждения без подсветки.

Цвет подсветки

Цвет подсветки, установленной в системе охлаждения.

Подробнее о самой подсветке см. выше. Здесь же отметим, что в подсветке современных систем охлаждения встречается как один цвет (чаще всего красный или синий, реже зеленый, желтый, белый или фиолетовый), так и многоцветные системы типа RGB и ARGB. Выбор одноцветной подсветки зависит в основном от эстетических предпочтений, а вот последних двух разновидностей стоит коснуться отдельно.

Базовый принцип работы и RGB, и ARGB-систем одинаков: в конструкции предусматривается набор светодиодов трех базовых цветов — красного (Red), зеленого (Green) и синего (Blue), а изменяя количество и яркость включенных светодиодов, можно не только интенсивность, но и оттенок свечения. Различие же между этими вариантами различается в функционале: системы RGB поддерживают ограниченный набор цветов (обычно до полутора десятков, а то и меньше), тогда как ARGB позволяют выбирать практически любой оттенок из всего доступного цветового диапазона. При этом и те, и другие могут поддерживать синхронизацию подсветки (см. ниже); в целом эта функция не является обязательной для RGB и ARGB систем, но применяется она почти исключительно в них.

Синхронизация подсветки

Технология синхронизации подсветки, предусмотренная в системе охлаждения со встроенным освещением (см. выше).

Сама по себе синхронизация позволяет «согласовать» подсветку охлаждения с подсветкой других компонентов системы — материнской платы, процессора, видеокарты, корпуса, клавиатуры, мыши и т. п. Благодаря этому согласованию все компоненты могут синхронно менять цвет, одновременно включаться/отключаться и т. п. Конкретные особенности работы такой подсветки зависят от применяемой технологии синхронизации, а она, как правило, у каждого производителя своя (Aura Sync у Asus, RGB Fusion у Gigabyte и т. п.). Также от этого зависит совместимость компонентов: все они должны поддерживать одну технологию. Так что проще всего добиться совместимости подсветки, собрав комплектующие от одного производителя. Впрочем, среди систем охлаждения существуют решения формата multi compatibility — совместимые сразу с несколькими технологиями синхронизации; конкретный список совместимости обычно указывается в подробных характеристиках таких моделей.

Размер радиатора

Номинальный размер радиатора, предусмотренного в системе водяного охлаждения.

Радиатор обеспечивает охлаждение нагретого теплоносителя, поступающего от охлаждаемых компонентов системы. Он чаще всего работает по принципу кулера — то есть состоит из собственно радиатора и одного и нескольких вентиляторов. Размер радиатора указывается одним числом — по наибольшему габариту, длине. А ширину (от которой зависит рабочая площадь и, соответственно, эффективность) можно определить на основании длины. Дело в том, что в радиаторах стандартно используются вентиляторы двух диаметров — 120 и 140 мм; если таких вентиляторов несколько, они устанавливаются в ряд. Это значит, что длина конструкции обязательно будет кратной диаметру вентилятора — 120 или 140 мм, а ширина будет соответствовать этому диаметру. К примеру, изделие размером в 120 мм или 140 мм будет иметь такую же ширину и один вентилятор, а размер в 240 мм означает уже два 120-мм вентилятора.

Описанные особенности приводят к тому, что более крупный размер далеко не обязательно означает более продвинутую конструкцию. Так, 360-мм радиатор с тремя небольшими вентиляторами может иметь такую же, а то и более низкую эффективность, чем 280-мм модель. Кроме того, напомним, что более крупные вентиляторы при той же производительности работают медленнее,...а значит — и тише.

Также размер радиатора нужно учитывать при поиске посадочного места в корпусе под него. При этом нужно иметь в виду и ширину: радиаторы на основе 140-мм вентиляторов обычно несовместимы с гнездами под радиаторы со 120-мм вентиляторами. Так, модель размером 140 мм не поместится в гнездо 240 мм (2х120 мм), а 280 мм (2х140 мм) не станет на место под 360 мм (3х120 мм), хотя формально размера в обоих случаях вроде бы хватает.

Размер помпы

Размеры помпы, которой оснащена система водяного охлаждения .

Чаще всего этот параметр указывается по всем трем габаритам: длине, ширине и толщине (высоте). Эти размеры определяют два момента: пространство, необходимое для установки помпы, и диаметр ее рабочей части. С первым все достаточно очевидно; отметим только, что в некоторых системах помпа играет одновременно роль ватерблока и устанавливается прямо на охлаждаемом компоненте системы, и именно там должно быть достаточно места. Диаметр же приблизительно соответствует длине и ширине помпы (либо меньшему из этих размеров, если они неодинаковы — например, 55 мм в модели 60х55х43 мм). От этого параметра зависят некоторые рабочие особенности. Так, большой диаметр помпы позволяет добиться необходимой производительности при сравнительно невысокой скорости вращения; последнее, в свою очередь, снижает уровень шума и увеличивает общую надежность конструкции. С другой стороны, крупная помпа стоит дороже и занимает больше места.

Скорость вращения помпы

Скорость, с которой вращается рабочая часть помпы, штатно предусмотренной в системе водяного охлаждения.

Высокая скорость, с одной стороны, положительно сказывается на производительности, с другой — повышает уровень шума и уменьшает время наработки на отказ. Поэтому при той же производительности более продвинутыми считаются сравнительно «медленные» помпы, в которых необходимые объемы перекачки достигаются за счет большого диаметра рабочей части, а не за счет скорости.

Наработка на отказ помпы

Время наработки помпы жидкостного охлаждения на отказ — приблизительное время работы, по прошествии которого помпа с большой вероятностью выйдет из строя. Эта цифра не является на 100 % точной, и фактический срок службы помпы может оказаться как меньше, так и больше заявленного — в зависимости от особенностей эксплуатации. Тем не менее, данный показатель удобен для сравнения разных моделей между собой: большее время наработки на отказ и на практике означает большую надежность и долговечность.

Длина трубки

Длина трубок, соединяющих ватерблок с радиатором в системе водяного охлаждения. Таких трубок по определению не меньше двух (подача и «обратка»), а иногда и больше, однако все они имеют одинаковую длину. Эта длина соответствует наибольшему расстоянию от ватерблока до радиатора, возможному для данной системы в штатной комплектации; данный нюанс нужно обязательно учесть, выбирая водяное охлаждение под определённое место установки. В целом, большинство моделей имеют длину 38 или 40 см, чего хватает для основных нужд.

Питание помпы

Тип разъёма питания для водяного насоса.

3-pin. Трёхконтактный коннектор питания на старых материнских платах не позволяет управлять оборотами двигателя водяного насоса в системах жидкостного охлаждения. Помпа при этом всё время работает в режиме максимальной производительности. Свежие «материнки» способны менять напряжение на таких коннекторах, обеспечивая тем самым изменение оборотов мотора.

4-pin. При использовании коннектора питания 4pin предполагается управление оборотами двигателя помпы с помощью широтно-импульсной модуляции. На него импульсами подаётся напряжение 12 В. Меняя продолжительность импульсов, можно точно задавать обороты мотора водяного насоса.

SATA. Коннектор питания SATA придётся кстати в том случае, если на материнской плате заняты все свободные разъёмы 3pin и 4pin.

Питание

Тип разъёма питания для системы охлаждения. Питание обычно выводится через материнскую плату, для этого чаще всего применяются такие разъёмы:

3-pin. Трёхштырьковый разъём; на сегодняшний день считается устаревшим, однако всё ещё применяется достаточно широко.

4-pin. Разъём с 4 штырьками. Его главным достоинством является возможность автоматической регулировки скорости вращения через PWM (подробнее см. «Регулятор оборотов»).

Эти два стандарта взаимно совместимы: 3-pin вентилятор можно подключить в 4-pin разъём на материнской плате, и наоборот (разве что PWM в обоих случаях будет недоступна).

Значительно реже встречаются такие варианты, как 2-pin, устанавливаемый в некоторые недорогие вентиляторы; 6-pin, применяемый в системах охлаждения с RGB-подсветкой, требующей довольно мощного дополнительного питания; 7-pin и 8-pin, по своей специфике аналогичные 6-пиновому разъему; а также питание через стандартный штекер MOLEX, предусматриваемое в отдельных корпусных вентиляторах.

Стартовое напряжение

Стартовое напряжение вентилятора, установленного в системе охлаждения. Фактически это наименьшее значение, необходимое для стабильной работы вентилятора — при слишком низком напряжении он попросту «не заведется». Отметим, что данный параметр актуален в основном для достаточно специфических задач — например, установки вентилятора в блок питания, с подключением к БП напрямую, или выбора внешнего контроллера для регулировки скорости вращения. При подключении же через стандартные разъемы питания на стартовое напряжение можно не обращать особого внимания.

Мин. уровень шума

Наименьший уровень шума, производимый системой охлаждения при работе.

Данный параметр указывается только для тех моделей, которые имеют регулировку производительности и могут работать на пониженной мощности. Соответственно, минимальный уровень шума — это уровень шума на самом «тихом» режиме, громкость работы, меньше которой у данной модели быть не может.

Эти данные будут полезны прежде всего тем, кто старается максимально снизить уровень шума и, что называется, «борется за каждый децибел». Однако здесь стоит отметить, что во многих моделях минимальные значения составляют порядка 15 дБ, а в самых тихих — всего 10 – 11 дБ. Эта громкость сравнима с шелестом листьев и практически теряется на фоне окружающего шума даже в жилом помещении ночью, не говоря уже о более «громких» условиях, причем разница между 11 и 18 дБ в данном случае не является сколь-либо значимой для человеческого восприятия. А сравнительная таблица по звуку начиная с 20 дБ приведена в п. «Уровень шума» ниже.

Уровень шума

Стандартный уровень шума, создаваемого системой охлаждения при работе. Обычно в данном пункте указывается максимальный шум при штатном режиме работы, без перегрузок и прочего «экстрима».

Отметим, что уровень шума обозначается в децибелах, а это нелинейная величина. Так что оценивать фактическую громкость проще всего по сравнительных таблицам. Вот такая таблица для значений, встречающихся в современных системах охлаждения:

20 дБ — еле слышимый звук (тихий шёпот человека на расстоянии около 1 м, звуковой фон на открытом поле за городом в безветренную погоду);
25 дБ — очень тихо (обычный шёпот на расстоянии 1 м);
30 дБ — тихо (настенные часы). Именно такой шум по санитарным нормам является максимально допустимым для постоянных источников звука в ночное время (с 23.00 до 7.00). Это значит, что если компьютером планируется сидеть ночью — желательно, чтобы громкость системы охлаждения не превышала данного значения.
35 дБ — разговор вполголоса, звуковой фон в тихой библиотеке;
40 дБ — разговор, сравнительно негромкий, но уже в полный голос. Максимально допустимый по санитарным нормам уровень шума для жилых помещений в дневное время, с 7.00 до 23.00. Впрочем, даже самые шумные системы охлаждения обычно не дотягивают до данного показателя, максимум для подобной техники составляет около 38 – 39 дБ.

Габариты

Общие габариты системы охлаждения. Для водяных систем (см. «Тип») в данном пункте указывается размер внешнего радиатора (размеры ватерблока в таких устройствах невелики, и уточнять их особо незачем).

В целом это достаточно очевидный параметр. Отметим только, что для корпусных вентиляторов (см. там же) особое значение имеет толщина — от нее напрямую зависит, сколько пространства устройство займет внутри системника. К вентиляторам с тонким корпусом при этом принято относить модели, не в которых данный размер не превышает 20 мм.
Подбор по параметрам
 
Цена
отдо грн.
Производители
Назначение
Тип
Socket (для процессорных)
Диаметр вентилятора
Максимальный TDP
Кол-во тепловых трубок
Контакт тепловых трубок
Крепление
Высота конструкции (для процессорных)
Выдув воздушного потока
Вентилятор
Цвет вентилятора
Питание системы охлаждения
Расширенный подбор
Каталог систем охлаждения 2022 - новинки, хиты продаж, купить системы охлаждения.