Form factor
The form factor of a computer case characterizes, first of all, the internal volume. Main PC Form Factors:
—
Midi Tower. A representative of the tower family (tower cases) of medium size — about 45 cm in height with a width of 15-20 cm, with the number of external bays from 2 to 4. Most popular for middle-class home PCs.
—
Mini Tower. The most compact "vertical" case type, with a width of 15-20 cm, has a height of about 35 cm and (usually) less than 2 compartments with external access. Used mainly for office PCs that do not require high performance.
—
Full Tower. The tower case is one of the largest form factors for PCs today: 15-20 cm wide, 50-60 cm high, with up to 10 externally accessible bays. Most often in this form factor running advanced high performance PCs
—
Desktop. Enclosures designed for installation directly on the desktop. They often have the possibility of horizontal installation — in such a way that a monitor can be placed on top of the case — although there are also models that are installed strictly vertically. Anyway, "desktop" models are relatively small.
—
Cube Case. Cases having a cubic or close to it shape. They can have different sizes and are intended for different types of motherboards, this point in each case
...should be clarified separately. Anyway, such cases have a rather original appearance, different from traditional "towers" and "desktops".RAM
The amount of random access memory (RAM, or RAM) that came with your computer.
The overall performance of the PC directly depends on this parameter: ceteris paribus, more RAM speeds up work, allows you to cope with more resource-intensive tasks, and facilitates the simultaneous execution of numerous processes. As for specific numbers, the minimum volume required for the stable operation of a general-purpose PC nowadays is
4 GB. Smaller amounts are enough for microcomputers and thin clients, and at least
8 GB is installed in gaming systems, on the contrary.
16 GB and even more so
32 GB are already very solid volumes, and in the most powerful and performant systems there are values \u200b\u200bof
64 GB and even more. Also on the market you can find configurations
without RAM at all — for such a device, the user can choose the amount of memory at his discretion; for a number of reasons, this configuration is especially popular in nettops.
Note that many modern PCs allow for an increase in the amount of RAM, so it does not always make sense to purchase an expensive device with a large amount of "RAM" — sometimes it is more reasonable to start with a simpler model and expand it if necessary. The possibility of upgrading in such cases should
...be clarified separately.Max. memory support
The maximum amount of RAM that can be installed on a computer. It depends, in particular, on the type of memory modules used, as well as on the number of slots for them. Paying attention to this parameter makes sense, first of all, if the PC is bought with the expectation of upgrading RAM and the amount of actually installed memory in it is noticeably less than the maximum available
So the amount of maximum installed memory depends on the number of slots in the PC and can be from
16 GB(a modest PC) to
64 GB and above. The most popular on the market are
PCs with a maximum installed 32 GB of memory.
Graphics card model
The main manufacturers of video cards nowadays are
AMD,
NVIDIA and Intel, and each has its own specifics. NVIDIA produces primarily discrete solutions; Among the most common are
the GeForce MX1xx,
GeForce MX3xx,
GeForce GTX 10xx series (in particular
GTX 1050,
GTX 1050 Ti and
GTX 1060),
GeForce GTX 16xx,
GeForce RTX 20xx,
GeForce RTX 30xx(
GeForce RTX 3060,
GeForce RTX 3060 Ti,
GeForce RTX 3070,
GeForce RTX 3070 Ti,
GeForce RTX 3080,
GeForce RTX 3080 Ti, GeForce RTX 3090,
GeForce RTX 3090 Ti),
GeForce RTX 4060 , GeForce RTX 4060 Ti,
GeForce RTX 4070,
GeForce RTX 4070 SUPER,
GeForce RTX 4070 Ti,
GeForce RTX 4070 Ti SUPER,
Ge Force RTX 4080,
GeForce RTX 4080 SUPER,
GeForce RTX 4090 and separate
Quadro series. AMD offers both discrete and integrated graphics - including the popular
Radeon RX 500,
Radeon RX 5000,
Radeon RX 6000,
Radeon RX 7000 and
AMD Radeon Pro series. And Intel deals exclusively with modules integrated into processors of its own production - these can be HD Graphics, UHD Graphics and Iris.
Note that many configurations with discrete graphics also have an integrated graphics module; in such cases, the name of the discrete video card is indicated as more advanced.
Graphics memory
The amount of native memory provided by the discrete graphics card (see "Graphics card type").
The larger this volume, the more powerful and advanced the video adapter is, the better it handles with complex tasks and, accordingly, the more expensive it is. Nowadays,
2 GB and
3 GB are considered quite modest,
4 GB are not bad,
6 GB and
8 GB are very solid, and more than 8 GB means that we have a specialized PC built for maximum graphics performance.
3DMark
The result shown by the PC graphics card in the 3DMark test (benchmark).
3DMark is a specialized test designed primarily to test the performance and stability of a graphics card in demanding games. The verification is carried out by running 3D videos created on various game engines using various technologies. The final result is evaluated both in terms of frame rate and in conditional points; in this paragraph, just the number of points is given. The higher it is, the more powerful and performant the graphics card is.
Note that 3DMark testing can be carried out for any type of graphics (see "Graphics card type"). At the same time (as of 2020) in integrated solutions, the final result rarely exceeds 1000 points; the most modest indicator for discrete adapters is about 1700 points; and in some high-end graphics cards, it can exceed 10,000 points.
Passmark G3D Mark
The result shown by the PC graphics card in the test (benchmark) Passmark G3D Mark.
Passmark G3D Mark is a comprehensive test to check the performance of a graphics card in various modes. Traditionally for such tests results are displayed in points, more points mean (proportionately) higher computing power. However, note that the graphics card is tested in different modes, and the final score is derived based on several results in specialized tests. Therefore, adapters with a similar overall result may differ slightly in actual performance in certain specific formats of operation. So if a PC is purchased for professional work with graphics, and high efficiency in some specialized tasks is critical, it will not hurt to clarify these nuances separately.
Note that with the help of Passmark G3D Mark, nowadays, all types of graphics adapters are tested (see "Graphics card type"). At the same time, for integrated solutions, a result of more than 1200 points is considered very good, and in discrete models this figure can vary from 2200 – 2300 points to 20,000 points or more.
Drive type
The type of storage device that is installed in the computer.
Note that many PCs allow you to add a complete drive or even completely replace it, but it is more convenient to buy a suitable configuration initially and not bother with re-equipment. In terms of types, traditional hard disk drives (
HDD) are increasingly losing ground to
SSD solid-state modules nowadays. In addition,
HDD + SSD combinations are quite popular (including those using advanced
Intel Optane and
Fusion Drive technologies). But solutions such as SSHD and eMMC have practically fallen into disuse. Let's take a closer look at these options:
— HDD. Classic hard disk. The key advantage of such drives is their low cost per unit of volume — this allows you to create capacious and at the same time inexpensive storage. On the other hand, HDDs are noticeably inferior to SSDs in terms of speed, and they also do not tolerate shocks and shocks. Thus, this type of media is less and less used in its pure form — it is much more common to find a combination of a hard drive with an SSD module (see below).
— SSD. Solid state drives based on flash memory. With the same volume, an SSD is much more expensive than an HDD, but this is justified by a number of advantages. First, such drives are much faster than hard
...drives; specific performance may be different (depending on the type of memory, connection interface, etc.), however, even inexpensive SSDs outperform advanced HDDs in this indicator. Secondly, solid-state memory has no moving parts, which offers several advantages at once: lightness, compactness, shock insensitivity and low power consumption. And the cost of such memory is constantly decreasing as technology advances. So more and more modern PCs are equipped with just such drives, and these can be configurations of any level — from low-cost to top ones.
— HDD+SSD. The presence in one system of two drives at once — HDD and SSD. Each of these varieties is described in more detail above; and their combination in one system allows you to combine the advantages and partially compensate for the shortcomings. For example, an SSD (which usually has a fairly small capacity) can store system files and other data for which speed of access is important (for example, work applications); and HDD is well suited for large volumes of information that do not require particularly high speed (a typical case is video files and other multimedia content). In addition, the solid-state module can be used not as a separate storage, but as an intermediate cache to speed up the hard drive; however, this usually requires special software settings (whereas the "two separate drives" mode is most often available by default).
We also emphasize that in this case we are talking about “ordinary” SSD modules that do not belong to the Optane and Fusion Drive series; the features of these series are detailed below.
HDD + Optane. Combination of a traditional hard drive with an Intel Optane series SSD. For more information about the general features of this combination, see "HDD + SSD" above. Here, we note that “optains” differ from other SSD drives in a special three-dimensional structure of memory cells (3D Xpoint technology). This allows you to access data at the level of individual cells and do without some additional operations, which speeds up the speed and reduces latency, and also has a positive effect on memory life. The second difference is that Optane is usually used not as a separate drive, but as an auxiliary buffer (cache) for the main hard drive, designed to increase speed. Both drives are perceived by the system as a single device. The disadvantage of this type of SSD is traditional — a rather high cost; it is also worth noting that its superiority is most noticeable at relatively low loads (although it does not disappear completely with increasing load).
— HDD + Fusion Drive. A kind of HDD + SSD bundle (see above), used exclusively in Apple computers and optimized for the proprietary macOS operating system. However, it would be more correct to compare this option with the “HDD + Optane” combination (also described above): for example, both drives are perceived by the system as a single unit, and the Fusion Drive module is also used as a high-speed cache for the hard drive. However, there are also significant differences. Firstly, Fusion Drive has significant volumes and is used not only as a service buffer, but also as part of a full-fledged drive — for permanent data storage. Secondly, the total volume of the entire bundle approximately corresponds to the sum of the volumes of both drives (minus a couple of "service" gigabytes). This type of drive is expensive, but the efficiency and convenience are well worth the price.
— SSHD. The so-called hybrid drive: a device that combines a hard drive and a small SSD cache in one case. Some time ago, this solution was quite popular, but now it is almost never found, having been supplanted by a more practical option — various types of HDD + SSD.
— eMMC. A type of solid-state memory originally developed for portable gadgets such as smartphones and tablets. It differs from SSD, on the one hand, in lower cost and low power consumption, on the other hand, in relatively low speed and reliability. Because of this, this type of drive is used extremely rarely — in particular, in single models of microcomputers and thin clients (see "Type").
— HDD + eMMC. Combination of hard disk drive (HDD) and eMMC solid state module. These types of drives are described in detail above; here we note that this option is extremely rare, and in rather specific devices — monoblocks (see "Type") with a transformer function, where the screen is a removable tablet that can be used autonomously. In such a tablet, an eMMC module is usually installed, and a hard drive is placed in the stationary part. However, another option is also possible — a bundle similar to HDD + SSD (see above), where eMMC is used to reduce cost and/or power consumption.
— SSD + eMMC. Another combination of the two types of drives described above. It was used in single monoblocks and nettops — mainly to reduce the cost; Today, this variant is almost non-existent.2nd drive capacity
The capacity of the optional storage installed in the PC.
This parameter is relevant primarily for configurations with different types of media. So, in HDD + SSD and HDD + eMMC bundles, the hard drive is considered the main drive, and this paragraph indicates the capacity of the solid-state module. In SSD + eMMC configurations, eMMC is considered the second drive — less capacious and performing an auxiliary function. There are PC models with two hard drives, but in such cases, the drives usually have the same volume, and it does not matter for them which one is considered the main one.
If we talk about specific numbers, then the volume
up to 128 GB can be considered relatively small, and
128 GB or more is solid. For more information on volumes in general, see "Drive Capacity" above.