Україна
Каталог   /   Фототехніка   /   Оптичні прилади   /   Телескопи

Порівняння BRESSER Galaxia II 114/900 EQ Solar Carbon vs BRESSER Galaxia 114/900 EQ

Додати до порівняння
BRESSER Galaxia II 114/900 EQ Solar Carbon
BRESSER Galaxia 114/900 EQ
BRESSER Galaxia II 114/900 EQ Solar CarbonBRESSER Galaxia 114/900 EQ
Порівняти ціни 21Порівняти ціни 5
ТОП продавці
Конструкціядзеркальний (рефлектори)дзеркальний (рефлектори)
Тип монтуванняекваторіальна (EQ2)екваторіальна
Характеристики
Діаметр об'єктива114 мм114 мм
Фокусна відстань900 мм900 мм
Макс. корисне збільшення228 x228 x
Макс. дозволяюче збільшення171 x171 x
Мін. збільшення16 x16 x
Світлосила1/81/7.9
Проникна здатність12.38 зор.вел12.8 зор.вел
Роздільна здатність (Dawes)1 кут.с
Роздільна здатність (Rayleigh)1.23 кут. с1.23 кут. с
Додатково
Шукачз точковою наводкою (LED)з точковою наводкою (LED)
Фокусеррейковийрейковий
Окуляри20 мм, 4 мм25 мм, 9 мм, 4 мм
Посадковий діаметр окуляра1.25 "1.25 "
Лінза Барлоу3 х3 х
Сонячний фільтр
Дзеркалосферичнесферичне
Адаптер для смартфона
Інше
Кріплення трубикріпильні кільця
Довжина труби87 см
Висота штатива120 см
Загальна вага12.5 кг11.7 кг
Дата додавання на E-Katalogсічень 2022березень 2015
Глосарій

Тип монтування

Тип монтування, яким оснащений телескоп.

Монтування – це механічний вузол, за допомогою якого телескоп кріпиться до штатива або ( в окремих варіантах) встановлюється прямо на землю. Крім кріплення, цей вузол відповідає також за наведення оптики в певну точку неба. Найбільшою популярністю в наш час користуються азимутальні пристосування в різних варіаціях — AZ1, AZ2, AZ3, а також у вигляді так званого монтування Добсона. Екваторіальні механізми різних моделей (EQ1, EQ2, EQ3, EQ4, EQ5) помітно складніше і дорожче, зате і можливостей дають більше. Зустрічаються системи, що поєднують відразу обидва ці типи монтувань — так звані азимутально-екваторіальні. І, нарешті, окремі телескопи і взагалі постачаються без монтування. Ось більш докладний опис цих варіантів:

— Азимутальне. Повна назва – «альт-азимутальна». Традиційно має дві осі повороту телескопа – одну для наведення за висотою, другу за азимутом. Різні моделі таких монтувань розрізняються за додатковими можливостями управління:
  • AZ1. Не мають системи точного руху....
  • AZ2. Оснащені системою точного руху по вертикалі (навколо горизонтальної осі).
  • AZ3. Оснащені системами точного руху по обох осях.
У будь-якому разі друга вісь (азимутальна) в таких системах завжди розташовується вертикально, незалежно від географічного положення телескопа; в цьому і полягає ключова відмінність від описаних нижче екваторіальних монтувань. В цілому азимутальні механізми досить прості і недорогі самі по собі, при цьому цілком зручні і практичні, завдяки чому саме даний варіант користується найбільшою популярністю в наш час. Крім того, вони ідеально підходять для спостережень за наземними об'єктами. Ключовим недоліком даного варіанту є слабка придатність до безперервного «супроводу» небесних тіл (що рухаються по небосхилу внаслідок обертання Землі). Якщо в правильно налаштованому екваторіальному механізмі для цього потрібно повертати телескоп всього по одній осі, то в азимутальному потрібно задіяти обидві осі, причому нерівномірно. Ситуацію можна вирішити за допомогою системи автостеження, але ця функція помітно впливає на ціну всього приладу. І навіть її наявність не гарантує, що телескоп підійде для астрофотографії на тривалих витримках — адже при такому використанні потрібно забезпечувати не тільки точний рух по кожній окремій осі, але ще поправку на поворот зображення в кадрі (що передбачається далеко не в кожній системі автостеження і ще більше збільшує ціну).

– Добсона. Специфічний різновид описаних вище азимутальних монтувань, що застосовується майже виключно в рефлекторах. Також передбачає дві осі обертання – горизонтальну і вертикальну. Ключовою особливістю монтування Добсона є те, що воно не розраховане на штатив і встановлюється прямо на землю або іншу рівну поверхню; для цього в конструкції передбачається широка масивна основа. Подібні системи відмінно підходять для телескопів Ньютона, у яких окуляр розташовується в передній частині: завдяки низькому розташуванню тубуса на монтуванні сам окуляр виявляється на досить зручній висоті. Також до переваг «добсонів» можна віднести простоту, невисоку вартість і водночас гарну надійність, що робить їх придатними навіть для великих та важких телескопів. З недоліків слід відзначити слабку сумісність з нерівними поверхнями, особливо твердими, на зразок суцільної скелі (тоді як штативи, що використовуються з іншими типами монтувань, цього недоліку позбавлені).

— Екваторіальне. Монтування цього типу дають змогу синхронізувати рух телескопа з рухом небесних тіл по небосхилу, що виникає через обертання Землі. Умовну вертикальну вісь, що відповідає за поворот телескопа з боку в бік, в таких механізмах називають віссю прямого сходження (R. A.), А горизонтальну (для наведення по умовній вертикалі) — віссю схилень (Dec.). Перед використанням екваторіальне монтування налаштовується так, щоб вісь прямого сходження була спрямована на «полюс світу», паралельно осі обертання Землі («осі світу»); конкретний нахил щодо вертикалі залежить від географічної широти місця спостережень. Такий формат роботи помітно ускладнює як конструкцію самої монтування, так і процедуру його встановлення. З іншого боку, екваторіальні системи ідеально підходять для тривалого «супроводу» астрономічних об'єктів: щоб компенсувати рух небесного тіла через обертання Землі і утримувати ціль в полі зору, досить обертати телескоп навколо осі R.A. вправо (за годинниковою стрілкою), причому з чітко визначеною швидкістю – 15° на годину, незалежно від положення об'єкта по вертикалі. Це робить подібні конструкції ідеальним варіантом для астрофотографії – в тому числі об'єктів далекого космосу, для яких потрібні тривалі витримки. Фактично для цього навіть не потрібна повноцінна система автостеження – досить порівняно простого годинникового механізму, що обертає телескоп навколо осі прямого сходження. Зворотною стороною цих переваг, крім згаданої складності і високої вартості, є слабка придатність для великих важких телескопів — зі збільшенням ваги приладу вага підходящої екваторіальної системи збільшується ще швидше.
Що стосується різних моделей подібних монтувань, то вони маркуються буквено-цифровим індексом, від EQ1 до EQ5. В цілому чим більше кількість в позначенні – тим більше і важче сама конструкція (включаючи триногу, якщо вона постачається в комплекті), тим гірше вона підходить для переміщення з місця на місце, проте тим краще гасить вібрації і струси. А ось обмеження за вагою телескопа з моделлю екваторіального монтування безпосередньо не пов'язані.

– Азимутально-екваторіальне. Механізми, що поєднують в собі відразу два типи монтувань. Виглядає це так: на штатив встановлена азимутальна система, а на ній — екваторіальна, в якій вже кріпиться телескоп. Подібна конструкція дає змогу використовувати можливості обох типів монтувань. Так, азимутальний механізм цілком підходить для спостережень за великими небесними тілами ближнього космосу (Місяць, планети) і великими ділянками неба (такими, як сузір'я), при цьому він не потребує складного попереднього налаштування. А для астрофотозйомки або для розглядання об'єктів далекого космосу на великих збільшеннях зручніше використовувати екваторіальну систему. Однак на практиці подібна універсальність потрібна вкрай рідко, притому що поєднання двох типів монтувань ускладнює конструкцію, збільшує її вартість і знижує надійність. Так що цей варіант можна зустріти в одиничних моделях телескопів.

– Без монтування. Повна відсутність монтувальної системи в комплекті не дає змогу застосовувати телескоп «з коробки». Проте, вона буває оптимальним варіантом в деяких ситуаціях. Перша – якщо користувач хоче вибрати монтування на свій розсуд, не покладаючись на рішення виробника, або навіть зібрати його самостійно (наприклад, досить багато астрономів виготовляють свої власні системи Добсона). Другий характерний варіант – якщо в господарстві вже є монтування (наприклад, від старого телескопа, який прийшов в непридатність), і переплачувати за друге просто немає сенсу. У будь-якому разі при виборі подібної моделі варто звертати особливу увагу на тип кріплення, на який розрахована труба – від нього напряму залежить сумісність з конкретним монтуванням.

Світлосила

Світлосила телескопа характеризує загальну кількість світла, що «захоплюється» системою і передається в око спостерігача. З точки зору цифр світлосила — це співвідношення між діаметром об'єктива і фокусною відстанню (див. вище): наприклад, для системи з апертурою 100 мм і фокусною відстанню 1000 мм світлосила буде складати 100/1000 = 1/10. Також цей показник називають «відносним отвором».

При виборі за світлосилою необхідно насамперед враховувати, для яких цілей планується застосовувати телескоп. Великий відносний отвір дуже зручний для астрофотографії, оскільки забезпечує пропускання великої кількості світла і дає змогу працювати з меншими витримками. А ось для візуальних спостережень висока світлосила не потрібна — навіть навпаки, більш довгофокусні (і, відповідно, менш світлосильні) телескопи характеризуються меншим рівнем аберацій і дають змогу застосовувати для спостереження більш зручні окуляри. Також відзначимо, що велика світлосила потребує застосування великих об'єктивів, що відповідним чином позначається на габаритах, вазі і ціні телескопа.

Проникна здатність

Проникна здатність телескопа — це зоряна величина найбільш тьмяних зірок, що через нього можна побачити при ідеальних умовах спостереження (в зеніті, при чистому повітрі). Цей показник описує здатність телескопа бачити невеликі і слабо світяться астрономічні об'єкти.

При оцінці можливостей телескопа за цим показником варто враховувати, що чим яскравіше об'єкт — тим менше його зоряна величина: наприклад, для Сіріуса, найяскравішої зірки нічного неба, цей показник становить -1, а для набагато більш тьмяною Полярної зірки — 2. Найбільша зоряна величина, видима неозброєним оком — близько 6,5.

Таким чином, чим більший число в даній характеристиці — тим краще телескоп підходить для роботи з тьмяними об'єктами. Найскромніші сучасні моделі дають змогу розглянути зірки завбільшки приблизно 10, а найбільш прогресивні з систем споживчого рівня здатні забезпечити видимість при показниках більше 15 — це майже в 4000 разів тьмяніше, ніж мінімум для неозброєного ока.

Зазначимо, що фактична проницающа здатність безпосередньо пов'язана з кратністю збільшення. Вважається, що свого максимуму за даним показником телескопи досягають при застосуванні окулярів, що забезпечують кратність близько 0,7 D (де D — діаметр об'єктива в міліметрах).

Роздільна здатність (Dawes)

Роздільна здатність телескопа, визначена згідно з критерієм Дауеса (Dawes). Також цей показник називають «межа Дауеса». (Зустрічається також прочитання «Дейвса», але воно не є вірним).

Роздільна здатність в даному випадку — це показник, що характеризує здатність телескопа розрізнити окремі джерела світла, розташовані на близькій відстані, іншими словами — здатність побачити їх саме як окремі об'єкти. Вимірюється цей показник в кутових секундах (1" — це 1/3600 частину градуса). На відстанях, менших, ніж роздільна здатність, ці джерела (наприклад, подвійні зірки) будуть зливатися в суцільну пляму. Таким чином, чим нижче цифри в даному пункті — тим вища роздільна здатність, тим краще телескоп підходить для розглядування близько розташованих об'єктів. Однак варто враховувати, що в даному випадку мова йде не про можливості бачити повністю окремі один від одного об'єкти, а лише про можливість пізнати в витягнутому світловій плямі два джерела світла, що злилися (для спостерігача) в один. Для того, щоб спостерігач міг бачити два окремі джерела, відстань між ними повинна бути приблизно вдвічі більше заявленої роздільної здатності.

Згідно з критерієм Дауеса роздільна здатність безпосередньо залежить від діаметра об'єктива телескопа (див. вище): чим більший апертура, тим менше може бути кут між окремо видимими об'єктами і тим вище роздільна здатність. За загальним принципом цей показник аналогічний критерієм Релея (див. «Роздільна здатність (Рел...ея)»), проте він був виведений експериментальним шляхом, а не теоретично. Тому, з одного боку, межа Дауеса точніше описує практичні можливості телескопа, з іншого — відповідність цих можливостей багато в чому залежить суб'єктивних особливостей спостерігача. Простіше кажучи, людина без досвіду спостережень за подвійними об'єктами, або має проблеми із зором, може просто «не впізнати» у витягнутому плямі два джерела світла, якщо вони будуть розташовуватися на відстані, порівнянному з межею Дауеса. Додатково про різницю між критеріями див. «Роздільна здатність (Релея)».

Окуляри

В даному пункті зазначаються окуляри, що входять у штатний комплект поставки телескопа, точніше — фокусні відстані цих окулярів.

Маючи ці дані і знаючи фокусна відстань телескопа (див. вище), можна визначити ступінь збільшення, що пристрій може видавати в комплектації «з коробки». Для телескопа без лінз Барлоу (див. нижче) та інших додаткових елементів подібного призначення кратність дорівнює фокусній відстані об'єктива, поделенному на фокусна відстань окуляра. Наприклад, оптика на 1000 мм, укомплектована «вічками» на 5 та 10 мм, буде здатна видати збільшення 1000/5=200х і 1000/10=100х.

За відсутності відповідного окуляра в комплекті його, зазвичай, можна докупити окремо.

Сонячний фільтр

Наявність сонячного фільтра у комплекті поставки телескопа.

Призначення цього аксесуара відображено вже в назві: він призначений для безпечних спостережень за Сонцем. Дивитися на» наше рідне світило " через незахищений телескоп категорично заборонено: навіть короткочасний погляд в окуляр може привести до незворотного пошкодження ока, до того ж сама оптика швидко перегрівається і може вийти з ладу. У світлі цього і використовуються спеціальні фільтри, пропускають дуже небагато світла-соті або навіть тисячні частки відсотка; в разі Сонця цього цілком достатньо для нормальної видимості, при цьому спостереження стає цілком безпечним.

Більшість сучасних телескопів комплектуються фільтрами, що надягають на об'єктив — вони захищають і очей від опіку, і сам прилад від перегріву. Зустрічаються також окулярні фільтри - вони компактніше і дешевше, проте вони не дають захисту для оптики і самі схильні до швидкого перегріву і виходу з ладу. Конкретний тип аксесуара варто уточнювати по документації виробника, а іноді це можна зробити навіть по фотографіях товару.

Адаптер для смартфона

Приладдя, що дає змогу встановлювати на телескоп смартфон таким чином, щоб камера апарату «бачила» зображення в окулярі. Адаптер для смартфона дає можливість проводити фото- і відеозйомку на смартфон, а також використовувати його екран в якості окуляра — наприклад, якщо зображення хочеться показати відразу кільком людям.

Кріплення труби

Спосіб кріплення труби до монтування, передбачений в телескопі.

У наш час використовується три основних таких способу: кільце, гвинт, пластина. Ось більш докладний опис кожного з них:

- Кріпильні кільця. Пара кілець з гвинтовими затискачами, встановлених на монтуванні. Внутрішній діаметр кілець приблизно відповідає товщині труби, а затягування гвинтів забезпечує щільну фіксацію. При цьому тубус телескопа, як правило, не має будь-яких спеціальних упорів і утримується в кільцях виключно за рахунок сили тертя. На практиці це дозволяє, послабивши гвинти, зрушити трубу вперед або назад, підібравши оптимальне положення під ту чи іншу ситуацію. Однак тут варто бути обережним: занадто велике зміщення кріплення від середини, особливо в рефракторах з великою довжиною труби, може порушити рівновагу всієї конструкції.
Як би там не було, кільця досить прості і в той же час зручні і практичні, а сумісність з ними обмежується виключно діаметром тубуса. У світлі цього саме даний тип кріплення найбільш популярний в наш час. Його недоліками можна назвати необхідність самостійно підбирати досить стабільне положення телескопа, а також стежити за надійною затягуванням гвинтів — їх ослаблення може привести до прослизання тубуса і навіть його випадання з кілець.

- Кріпильна пластина. Фактично мова йде про кріплення типу «ластівчин хвіст». На корпусі те...лескопа для цього передбачається спеціальна рейка, а на монтуванні — платформа з пазом. При установці труби на монтування рейка засувається в паз з торця і фіксується спеціальним пристосуванням на зразок засувки або гвинта.
Одним з ключових переваг кріпильних пластин є простота і швидкість монтажу і демонтажу телескопа. Так, відкрутити і закрутити єдиний гвинт фіксатора простіше, ніж возитися з гвинтовим кріпленням або затяжками на кільцях — тим більше що в багатьох моделях цей гвинт можна крутити руками, без спеціального інструменту. А вже про засувках і говорити не доводиться. Недоліком даного варіанту можна назвати вимогливість до якості матеріалів і точності виготовлення — інакше може з'явитися люфт, здатний помітно «зіпсувати життя» астроному. Крім того, подібне кріплення має дуже обмежені можливості по переміщенню телескопа вперед-назад на монтуванні, а то і зовсім не має їх; а планки і пази можуть відрізнятися за формою і розмірами, що дещо ускладнює підбір сторонніх монтувань.

— Кріпильний ґвинт. Монтування з таким кріпленням мають посадочне місце у вигляді літери Y, між «рогами» якої і встановлюється телескоп. При цьому він з обох сторін прикріплюється до рогів гвинтами, які вкручуються прямо в тубус; гвинтів передбачається мінімум по два з кожного боку, щоб труба не могла самостійно повернутися навколо точки кріплення.
В цілому цей варіант фіксації відрізняється високою надійністю і зручністю в процесі використання телескопа. Гвинти щільно, без люфтів, тримають тубус; при їх ослабленні може хіба що з'явитися той самий люфт, але і тільки; крім того, телескоп втримається на монтуванні і не впаде, якщо хоч один гвинт залишається хоча б частково закрученим. Крім того, місце фіксації зазвичай розміщується в районі центру ваги, що за замовчуванням забезпечує оптимальний баланс і позбавляє користувача від необхідності самостійно підшукувати точку кріплення. З іншого боку, установка і зняття труби в таких монтуваннях вимагає більше часу і клопоту, ніж в описаних вище системах; а розташування отворів під гвинти і кріпильна різьба в різних моделях, як правило, різні, і конструкції цього типу зазвичай не є взаємозамінними.

Загальна вага

Загальна вага телескопа в зірці – з урахуванням монтування і штатива.

Невелика вага зручна насамперед для «похідного» застосування і частих переміщень з місця на місце. Однак зворотною стороною цього є скромні характеристики, висока вартість, а іноді — і те, і інше. Крім того, легша підставка гірше згладжує струси і вібрації, що може бути актуальним в деяких ситуаціях (наприклад, якщо місце спостереження знаходиться недалеко від залізниці, де часто проходять товарні поїзди).
Динаміка цін