Серія
Серія, до якої належить процесор.
Серія зазвичай об'єднує чипи, схожі за загальним рівнем, характеристиками, особливостями й призначенням — наприклад, бюджетні процесори з низьким енергоспоживанням, моделі середнього рівня з розширеними графічними можливостями тощо. Вибір процесора найзручніше почати саме з визначення серії, яка вам оптимально підійде; щоправда, варто врахувати, що чипи однієї серії можуть відноситися до різних поколінь.
Ось найпопулярніші серії процесорів від Intel:
—
Celeron. Процесори бюджетного рівня, найбільш прості й недорогі десктопні чипи споживчого рівня від Intel, з відповідними характеристиками. Можуть поєднувати CPU з вбудованим графічним модулем.
—
Pentium. Серія бюджетних настільних процесорів від Intel, більш прогресивна, ніж Celeron.
—
Core i3. Серія процесорів початкового й середнього рівня, найбюджетніша серія в сімействі Core ix. Виготовлені на основі двоядерної архітектури, мають кеш третього рівня і вбудований графічний процесор.
—
Core i5. Серія процесорів середнього класу як взагалі, так і в сімействі Core ix. Архітектура дво- або чотириядерна, мають кеш третього рівня, багато моделей також оснащені вбудованим графічним чипом.
—
Core i7. Серія продуктивних процесорів; до поя
...ви i9 у травні 2017 року була найпрогресивнішою в сімействі Core ix. Мають не менше 4 ядер (у топових рішеннях — до 8), об'ємний кеш третього рівня та вбудовану графіку.
— Core i9. Високопродуктивні настільні процесори, які представлені в 2017 році; найпрогресивніша серія Core ix і найпотужніша лінійка десктопних CPU на момент випуску. Мають від 10 ядер (від 6 в мобільних версіях).
— Xeon. Серія продуктивних процесорів, призначених насамперед для серверів. Добре підходять для роботи в багатопроцесорних системах. Кількість ядер складає 2, 4 або 6, багато моделей мають кеш третього рівня.
Найпопулярніші в наш час серії процесорів AMD включають: Ryzen 3, Ryzen 5, Ryzen 7, Ryzen 9, Ryzen Threadripper, EPYC.
— A-Series. Серія так званих гібридних процесорів від AMD, які також називають APU — Accelerated Processing Unit. Це переважно висококласні рішення з передовою інтегрованою графікою, можливості якої в деяких моделях можна порівняти з дискретними відеокартами. Зокрема, для новітніх процесорів A-Series заявлена можливість повноцінної роботи з багатьма популярними онлайн-іграми на максимальних налаштуваннях.
— EPYC. Серія професійних процесорів від AMD, призначених переважно для серверів; позиціонуються, зокрема, як рішення, оптимізовані для використання в хмарних сервісах. Побудовані на мікроархітектурі Zen, як і настільні Ryzen (див. нижче).
— FX. Сімейство висококласних продуктивних процесорів від AMD, перша у світі серія, яка представила восьмиядерний процесор для ПК. Утім, є і відносно скромні чотириядерні. Ще одна особливість — рідинне охолодження, яке штатно входить до комплекту у деяких моделях: класичного повітряного буває недостатньо з урахуванням високої потужності й відповідного TDP (див. нижче).
— AMD Fusion. Усе сімейство процесорів Fusion спершу було створено як пристрої з інтегрованою графікою, які об'єднують в одному чипі центральний процесор і відеокарту; такі чипи називають APU — Accelerated Processing Unit, а їх графічна продуктивність нерідко порівнянна з недорогими дискретними відеокартами. Сучасні процесори Fusion мають маркування з буквою А і парним числом — від А4 до А12; чим більше число, тим прогресивнішою є серія.
— Athlon. Саме собою маркування Athlon використовується в багатьох родинах процесорів від AMD, і навіть в остаточно застарілих. У наш час під цією назвою можуть матися на увазі як Athlon X4, так і «звичайні» Athlon з уточненням кодової назви — зазвичай Bristol Ridge або Raven Ridge. Усі ці CPU розраховані переважно на системи споживчого рівня. При цьому чипи X4 були випущені в 2015 році й позиціонуються як порівняно недорогі й у той же час продуктивні рішення під сокет FM+. Процесори Athlon Bristol Ridge з'явилися в 2016 році й стали останньою серією «атлонів» на основі мікроархітектури Excavator (28-нм техпроцес). Наступне покоління, Raven Ridge, використало вже мікроархітектуру Zen, яка представила низку ключових поліпшень — зокрема, 14-нм техпроцес і підтримку багатопотоковості. Обидві ці серії належать до середнього рівня.
— Ryzen 3. Третя за рахунком серія процесорів від AMD, які побудовані на мікроархітектурі Zen (після Ryzen 7 і Ryzen 5). Перші чипи цієї серії були випущені влітку 2017 року й стали найбюджетнішими рішеннями серед усіх Ryzen. Випускаються вони за тими ж технологіями, що й старші серії, однак у Ryzen 3 деактивовано половину обчислювальних ядер. Тим не менш, ця лінійка включає досить продуктивні пристрої, розраховані зокрема на ігрові конфігурації і робочі станції.
— Ryzen 5. Серія процесорів від AMD, що побудована на мікроархітектурі Zen. Друга за рахунком серія на цій архітектурі, яка випущена в квітні 2017 року як більш доступна альтернатива чипам Ryzen 7. Чипи Ryzen 5 мають скромніші робочі характеристики (зокрема, меншу тактову частоту і, у деяких моделях, об'єм кешу L3). В усьому іншому вони повністю аналогічні до «сімок» і також позиціонуються як високопродуктивні чипи для ігрових і робочих станцій. Детальніше див. «Ryzen 7» нижче.
— Ryzen 7. Перша серія процесорів від AMD, яка побудована на мікроархітектурі Zen. Була представлена в березні 2017 року. Загалом чипи Ryzen (усіх серій) просуваються як висококласні рішення для геймерів, розробників, графічних дизайнерів і відеоредакторів. Однією з головних відмінностей Zen від попередніх мікроархітектур стало використання одночасної багатопотоковості (див. «SMT (багатопотоковість)»), унаслідок чого було значно збільшено кількість операцій за такт за тієї ж тактової частоти. Крім цього, кожне ядро отримало власний блок обчислень із плавальною точкою, збільшилася швидкість роботи кеш-пам'яті першого рівня, а об'єм кешу L3 в Ryzen 7 штатно складає 16 МБ.
— Ryzen 9. Серія, яка представлена в 2019 році з випуском чипів третього покоління Matisse на мікроархітектурі Zen. Як і всі Ryzen, призначається переважно для високопродуктивних ігрових і робочих станцій, геймерських систем і ПК ентузіастів; при цьому ця серія стала топовою серед усіх «райзенів», витіснивши з цієї позиції Ryzen 7. Наприклад, перші моделі Ryzen 9 мали 12 ядер і 24 потоки, а в пізніших моделях ця кількість була збільшена до 16/32 відповідно.
— Ryzen Threadripper. Серія високопродуктивних процесорів від AMD, яка позиціонується як «рішення для ігор і творчості»: за твердженням виробників, чипи Threadripper спеціально розроблені для високопродуктивних геймерських систем і робочих станцій. Мають від 8 ядер і підтримують багатопотоковість.
Крім серій, сучасні процесори поділяються також на покоління, за часом випуску. При цьому одне покоління включає кілька серій, а одна серія може випускатися в межах декількох поколінь. Детальніше про це див. «Кодова назва».Кількість потоків
Кількість потоків команд, яку процесор може виконувати одночасно.
Першопочатково кожне фізичне ядро (див. «Кількість ядер») призначалося для виконання одного потоку команд, і кількість потоків відповідала кількості ядер. Однак у наш час існує чимало процесорів, що підтримують технологію багатопотоковості Hyper-threading або SMT (див. нижче) і здатні виконувати відразу два потоки на кожному ядрі. У таких моделях кількість потоків виходить вдвічі більшою за кількість ядер — наприклад, у чотириядерному чипі буде вказано 8 потоків.
Загалом більше число потоків, за інших однакових умов, позитивно позначається на швидкодії та ефективності, однак підвищує вартість процесора.
Багатопотоковість
Підтримка процесором функції багатопоточності.
Для Intel це Hyper-threading, для AMD – SMT. Ця технологія використовується для оптимізації навантаження на кожне фізичне ядро процесора. Її ключовий принцип (спрощено) полягає в тому, що кожне таке ядро визначається системою як два логічні ядра — наприклад, чотириядерний процесор система «бачить» як восьмиядерний. При цьому кожне фізичне ядро постійно перемикається між двома логічними ядрами, по суті між двома потоками команд: коли в одному потоці виникає затримка (наприклад, у разі помилки або в очікуванні результату попередньої інструкції), ядро не простоює, а приступає до виконання другого потоку команд. Завдяки такій технології зменшується час відгуку процесора, а в серверних системах збільшується стабільність при великій кількості підключених користувачів.
Тактова частота
Кількість тактів за секунду, яке видає процесор в штатному робочому режимі. Тактом називається окремий електричний імпульс, який використовується для обробки даних і синхронізації процесора з іншими компонентами комп'ютерної системи. Різні операції можуть вимагати як долей такту, так і кількох тактів, однак у будь-якому разі тактова частота є одним з основних параметрів, що характеризують продуктивність і швидкість роботи процесора — за інших рівних умов характеристиках процесор з більш високою тактовою частотою буде працювати швидше і краще справлятися зі значними навантаженнями. Водночас варто враховувати, що фактична продуктивність чипу визначається не тільки тактовою частотою, але і рядом інших характеристик — починаючи від серії і архітектури (див. відповідні пункти) і закінчуючи кількістю ядер і підтримкою спеціальних інструкцій. Так що порівнювати по тактовій частоті має сенс тільки чипи зі схожими характеристиками, що належать до однієї серії та поколінню.
Частота TurboBoost / TurboCore
Максимальна тактова частота процесора, що досягається під час роботи в режимі розгону Turbo Boost або Turbo Core.
Назва Turbo Boost використовується для технології розгону, що використовується компанією Intel, Turbo Core - для рішення від AMD. Принцип дії в обох випадках один: якщо деякі ядра не задіяні або працюють під навантаженням нижче за максимальне, процесор може перекидати на них частину навантаження із завантажених ядер, підвищуючи таким чином обчислювальну потужність і продуктивність. Робота в такому режимі характерна підвищенням тактової частоти, вона вказується в даному випадку.
Зазначимо, що йдеться про максимально можливу тактову частоту — сучасні CPU здатні регулювати режим роботи в залежності від ситуації, і при відносно невисокому навантаженні фактична частота може бути нижчою за максимально можливу. Про загальне значення цього параметра див. «Тактова частота».
Кеш 3-го рівня L3
Об'єм кешу 3 рівня (L3), передбаченого в процесорі.
Кеш — проміжний буфер пам'яті, в який під час роботи процесора записуються найбільш часто використовувані дані з оперативної пам'яті. Це прискорює доступ до них і позитивно позначається на швидкодії системи. Чим більше об'єм кешу — тим більше даних може зберігатися для швидкого доступу і тим вище швидкодія.
Множник
Коефіцієнт, на підставі якого виводиться значення тактової частоти процесора. Остання обчислюється шляхом множення множника на частоту системної шини (див. Частота системної шини). Наприклад, при частоті системної шини 533 МГц і множник 4 тактова частота процесора буде становити приблизно 2,1 ГГц.
Тест Passmark CPU Mark
Результат, показаний процесором в тесті Passmark CPU Mark.
Passmark CPU Mark — комплексний тест, який перевіряє не тільки ігрові можливості CPU, але і його продуктивність в інших режимах, на підставі чого і виводить загальний бал; за цим балом можна досить достовірно оцінити процесор загалом.
Тест Geekbench 4
Результат, показаний процесором в тесті (бенчмарку) Geekbench 4.
Geekbench 4 представляє собою комплексний багатоплатформовий тест, що дозволяє, крім іншого, визначати ефективність роботи процесора в різних режимах. При цьому, за заявою розробників, режими перевірки максимально наближені до різних реальним завданням, які доводиться вирішувати процесору. Результат наводиться в балах: чим більше балів — тим потужніше CPU, при цьому різниця в числах відповідає фактичному відмінності в продуктивності («вдвічі більше результат — удвічі вище потужність»).
Зазначимо, що за еталон у Geekbench 4 взято процесор Intel Core i7-6600U з тактовою частотою 2.6 ГГц. Його потужність оцінена в 4000 балів, і вже з нею порівнюються показники інших тестованих CPU.