Україна
Каталог   /   Комп'ютерна техніка   /   Комплектуючі   /   Системи охолодження

Порівняння Thermaltake Riing 12 LED Blue vs Deepcool ICEEDGE MINI

Додати до порівняння
Thermaltake Riing 12 LED Blue
Deepcool ICEEDGE MINI
Thermaltake Riing 12 LED BlueDeepcool ICEEDGE MINI
від 10 936 грн.
Товар застарів
Порівняти ціни 2
Відгуки
ТОП продавці
Головне
Призначенняу корпусдля процесора
Типвентиляторактивний кулер
Вентилятор
Кількість вентиляторів1 шт1 шт
Діаметр вентилятора120 мм80 мм
Товщина вентилятора25 мм
Тип підшипникагідродинамічнийгідродинамічний
Максимальні оберти
1500 об/хв /1000 L.N.C./
2200 об/хв
Регулятор обертівавто (PWM)немає
Макс. повітряний потік40.6 CFM23 CFM
Статичний тиск2.01 мм H2O
Напрацювання на відмову40 тис. год
Максимальний TDP95 Вт
Видування повітряного потокувбік (розсіювання)
Можливість заміни
Підсвічування
Колір підсвічуваннясиній
Рівень шуму
25 дБ /18.7 L.N.C./
23 дБ
Радіатор
Теплових трубок2 шт
Контакт теплотрубокпрямий
Матеріал радіатораалюміній/мідь
Матеріал підкладкиалюміній
Socket
 
 
 
 
 
 
AMD AM2/AM3/FM1/FM2
Intel 775
Intel 1150
Intel 1155/1156
Intel 1151 / 1151 v2
Intel 1200
Інше
Джерело живлення4-pin3-pin
Тип кріпленнясиліконові кріпленнязащібки
Габарити120x120x25 мм127x63x129.5 мм
Висота130 мм
Вага159 г268 г
Дата додавання на E-Katalogсерпень 2015червень 2012

Призначення

Компонент комп'ютерної системи, для якого призначена система охолодження.

У наш час найбільшого поширення набули два різновиди СО — для процесора і для корпусу. Випускаються і інші рішення – для відеокарт, оперативної пам'яті, жорстких дисків M.2 SSD тощо; однак в більшості ситуацій подібні компоненти комп'ютера або дуже рідко потребують спеціальних систем охолодження (характерний приклад — жорсткі диски), або оснащуються ними від початку (відеокарти).

СО для процесорів найчастіше мають формат активного кулера або системи водяного охолодження (див. «Тип»). При цьому і в тому, і в іншому разі в конструкції зазвичай передбачається підкладка — контактна пластина, яка прилягає безпосередньо до процесора. Тепло від підкладки передається до блоку охолодження за допомогою теплових трубок (в кулерах) або контуру з циркулюючим теплоносієм (в рідинних системах). Для процесорів випускаються також радіатори – вони розраховані в основному на малопотужні CPU з низьким тепловиділенням; при встановленні такого компонента потрібно приділяти особливу увагу якості охолодження корпусу.

Зі свого боку, СО для корпусів робляться виключно у вигляді вентиляторів, оскільки їх задача — не охолоджувати строго певний компонент, а видаляти гаряче повітря з усього об'єму системного блоку.

Тип

Вентилятор. Класичний вентилятор-моторчик з лопатями, що забезпечує потік повітря; також сюди входять комплекти з декількох вентиляторів. У будь-якому разі не варто плутати такі пристосування з кулерами (див. нижче) – вентилятори не мають радіаторів. Практично всі рішення цього типу призначені для корпусів (див. «Призначення»), лише поодинокі моделі розраховані на «обдув» жорстких дисків або чипсетів.

Радіатор. Конструкція з теплопровідного матеріалу, що має спеціальну ребристу форму. Така форма забезпечує велику площу зіткнення з повітрям, як наслідок — хорошу тепловіддачу. Радіатори не споживають енергії і працюють абсолютно безшумно, проте не характеризуються ефективністю. Тому в чистому вигляді вони зустрічаються вкрай рідко, а призначаються такі моделі або для малопотужних компонентів ПК з низьким тепловиділенням (енергоефективні процесори, жорсткі диски тощо), або для збірки активного кулера (див. нижче) з окремо куплених вентилятора і радіатора (цей варіант зустрічається серед рішень під відеокарти).

Активний кулер. Пристосування у вигляді радіатора з встановленим на ньому вентилятором; при цьому в багатьох моделях радіатор не контактує з охолоджуваним компонентом напряму, а з'єднується з ним за допомогою теплових трубок, при цьому видування повітря здійснюється убік (так зване баштову компонування, особливо популярне в системах для CP...U; докладніше див. «Видування повітряного потоку»). У будь-якому разі подібні конструкції, з одного боку, порівняно прості і недорогі, з іншого-досить ефективні, завдяки чому вони є надзвичайно популярним типом СО. Зокрема, саме в даному форматі випускається більшість рішень для процесорів (див. «Призначення»), а в цілому кулери можуть застосовуватися практично для будь-якого компонента системи, за винятком корпусу.

Водяне охолодження. Системи водяного охолодження складаються з трьох основних частин: ватерблока, що безпосередньо контактує з охолоджуваним компонентом (зазвичай процесором), зовнішнього охолоджувача, а також помпи (окремої або вбудованої в охолоджувач). Ці компоненти з'єднуються шлангами, по яким циркулює вода (або інший аналогічний теплоносій) — вона і забезпечує перенесення тепла. А охолоджуючий блок зазвичай являє собою кулер-систему з вентиляторів і радіаторів, яка розсіює теплову енергію в навколишньому повітрі. Водяні системи помітно ефективніше активних кулерів (див. вище), вони підходять навіть для дуже потужних і «гарячих» CPU, з якими традиційні кулери справляються з труднощами. З іншого боку, даний тип охолодження досить громіздкий і складний в монтажі, та й обходиться недешево.

– Комплект СРО. Комплект для самостійної збірки системи рідинного (водяного) охолоджння. Відмінність таких рішень від звичайного водяного охолоджння (див. вище) полягає в тому, що в даному разі вся система постачається у вигляді набору деталей, з якого користувач повинен сам зібрати готову СРО (тоді як в традиційних водяних системах справа зазвичай обмежується підключенням шлангів і заправкою теплоносія). Подібний формат помітно розширює можливості користувача в плані монтажу: можна самостійно вибрати окремі нюанси компонування, замінити деякі штатні деталі, доповнити конструкцію сторонніми елементами тощо. З іншого боку, саме встановлення виходить набагато складнішим, ніж у традиційних водяних систем. Тому комплектів СРО випускається дуже небагато, а розраховані вони в основному на ентузіастів-моддерів, які люблять експериментувати з оформленням і конструкцією своїх ПК.

Діаметр вентилятора

Діаметр вентилятора (вентиляторів), що використовуються в системі охолодження.

Загалом більш великі вентилятори вважаються більш прогресивними, ніж невеликі: вони дають змогу створити потужний потік повітря при порівняно невисоких обертах і невеликому рівні шуму. З іншого боку, великий діаметр означає великі габарити, вагу і ціну. Що стосується конкретних цифр, то моделі на 40 мм і 60 мм вважаються мініатюрними, 80 мм і 92 мм — середніми, 120 мм і 135/140 мм — великими, а в найбільш потужних корпусних системах зустрічаються навіть вентилятори на 200 мм.

Товщина вентилятора

Цей параметр слід розглядати в контексті того, чи впишеться вентилятор у корпус комп'ютера. Стандартні корпусні вентилятори випускаються у розмірі близько 25 мм завтовшки. Низькопрофільні кулери товщиною близько 15 мм призначені для малогабаритних корпусів, де дуже важлива економія простору. Вентилятори великої товщини (30-40 мм) можуть похвалитися високою ефективністю охолодження завдяки збільшеним розмірам крильчатки. Однак вони шумніші за стандартні моделі на тих же оборотах і не завжди нормально вписуються в корпус, часом зачіпаючи інші комплектуючі.

Максимальні оберти

Найбільші оберти, на яких здатен працювати вентилятор системи охолодження; для моделей без регулятора обертів (див. нижче) у цьому пункті зазначається штатна швидкість обертання. У найбільш «повільних» сучасних вентиляторах максимальна швидкість не перевищує 1000 об/хв, в самих «швидких» може становити до 2500 об/хв і навіть більше .

Відзначимо, що даний параметр щільно пов'язаний з діаметром вентилятора (див. вище): чим менше діаметр, тим вище повинні бути оберти для досягнення потрібних значень повітряного потоку. При цьому швидкість обертання безпосередньо впливає на рівень шуму і вібрацій. Тому вважається, що потрібний об'єм повітря найкраще забезпечувати великими і порівняно «повільними» вентиляторами; а «швидкі» невеликі моделі має сенс застосовувати там, де компактність має вирішальне значення. Якщо ж порівнювати по швидкості моделі однакового розміру, то більш високі оберти позитивно позначаються на продуктивності, проте підвищують не тільки рівень шуму, а також ціну та енергоспоживання.

Регулятор обертів

Авто (PWM). Тип автоматичного регулятора, застосовуваний у системах охолодження для процесорів. Принцип такого регулювання полягає в тому, що автоматика відстежує поточне навантаження на CPU і підлаштовує під неї режим роботи вентилятора. Таким чином, система охолодження працює «на випередження»: вона фактично запобігає підвищення температури, а не усуває його (на відміну від описаного нижче терморегулятора). Недоліки подібної автоматики — висока вартість і додаткові вимоги до сумісності: функція PWM повинна підтримуватися материнською платою, а енергія на вентилятор повинна подаватися через роз'єм 4-pin (див. «Живлення»).

— Ручний. Ручний регулятор, що дозволяє виставити швидкість обертання за бажанням користувача. Головними його перевагами є можливість довільної підстроювання, так і надійність: автоматика не завжди реагує оптимально, і в продуктивних системах користувачеві іноді краще брати управління у свої руки. З іншого боку, ручне управління дорожче, а також складніше у застосуванні — воно потребує підвищеної уваги до стану системи, а при неуважному відношенні значно підвищується ймовірність перегріву.

— Ручний/авто. Поєднання вищенаведених двох систем: основне регулювання здійснюється за рахунок PWM, а ручний регулятор служить для обмеження максимальної швидкості обертання. Досить зручний і прогресивний варіант, що розширює можливості вирівнювання і при цьому не потребує постійного контролю температури, як при...чисто ручне налаштування. Щоправда, і коштує такий функціонал недешево.

— Перехідник (резистор). У цьому випадку регулювання обертів проводиться за рахунок зниження напруги, що подається на вентилятор. Для цього він підключається до блоку живлення через перехідник-резистор. Це своєрідна альтернатива ручному регулюванні: перехідники коштують недорого. З іншого боку, вони набагато менш зручні: єдиний спосіб змінити швидкість обертання при такому регулюванні — власне поміняти перехідник, а для цього доводиться відключати систему і лізти в корпус.

— Терморегулятор. Автоматичне регулювання обертів за даними з датчика, що вимірює температуру охолоджуваного компонента: при підвищенні температури інтенсивність роботи також підвищується, і навпаки. Такі системи простіше описаних вище PWM, до того ж можуть застосовуватися практично для будь-яких компонентів системи, не тільки для процесора. З іншого боку, вони мають велику інерцію і час реакції: якщо PWM запобігає нагрів заздалегідь, то терморегулятор спрацьовує від вже сталося підвищення температури.

Макс. повітряний потік

Максимальний повітряний потік, що може створити вентилятор системи охолодження; вимірюється в CFM - кубічних футах за хвилину.

Чим вище кількість CFM - тим ефективніший вентилятор. З іншого боку, висока продуктивність вимагає або великого діаметра (що позначається на габаритах та вартості), або високої швидкості (а вона підвищує рівень шуму та вібрацій). Тому при виборі має сенс не гнатися за максимальним повітряним потоком, а скористатися спеціальними формулами, що дозволяють розрахувати необхідне кількість CFM залежно від типу та потужності компонента, що охолоджується, та інших параметрів. Такі формули можна знайти у спеціальних джерелах. Що ж до конкретних чисел, то найбільш скромних системах продуктивність вбирається у 30 CFM, а найбільш потужних може становити понад 80 CFM.

Також варто враховувати, що фактичне значення повітряного потоку на найбільших оборотах зазвичай нижче за заявлений максимальний; докладніше див. «Статичний тиск».

Статичний тиск

Максимальне статичний тиск повітря, що створюється вентилятором під час роботи.

Даний параметр вимірюється наступним чином: якщо вентилятор встановити на глухий трубі, звідки немає виходу повітря, і включити на вдув, то досягнуте в трубі тиск і буде відповідати статичного. На практиці цей параметр визначає загальну ефективність роботи вентилятора: чим вище статичний тиск (за інших рівних умов) — тим простіше вентилятору «проштовхнути» потрібний об'єм повітря через простір з високим опором, наприклад, через вузькі прорізи радіатора або через набитий комплектуючими корпус.

Також даний параметр використовується при деяких специфічних обчисленнях, однак ці обчислення доволі складні і рядовому користувачеві, зазвичай, не потрібні — вони пов'язані з нюансами, актуальними в основному для ентузіастів-комп'ютерників. Детальніше про це можна прочитати в спеціальних джерелах.

Напрацювання на відмову

Загальний час, який вентилятор системи охолодження здатний гарантовано пропрацювати до виходу з ладу. Зазначимо, що при вичерпанні цього часу пристрій не обов'язково зламається — зазвичай сучасні вентилятори мають значний запас міцності і здатні пропрацювати ще якийсь період. Водночас оцінювати загальну довговічність системи охолодження варто саме за цим параметром.
Динаміка цін
Thermaltake Riing 12 LED Blue часто порівнюють
Deepcool ICEEDGE MINI часто порівнюють