Україна
Каталог   /   Комп'ютерна техніка   /   Комплектуючі   /   Системи охолодження

Порівняння Chieftec AF-1225PWM vs Xilence XF046

Додати до порівняння
Chieftec AF-1225PWM
Xilence XF046
Chieftec AF-1225PWMXilence XF046
Порівняти ціни 33Порівняти ціни 34
Відгуки
1
0
1
0
0
2
0
0
ТОП продавці
Головне
Призначенняу корпусу корпус
Типвентиляторвентилятор
Вентилятор
Кількість вентиляторів1 шт1 шт
Діаметр вентилятора120 мм120 мм
Товщина вентилятора25 мм25 мм
Тип підшипникакоченнягідродинамічний
Максимальні оберти1650 об/хв1800 об/хв
Регулятор обертівавто (PWM)немає
Макс. повітряний потік61 CFM44.71 CFM
Підсвічування
Колір підсвічуваннячервоний
Рівень шуму32 дБ22 дБ
Інше
Джерело живлення4-pin та MOLEX3-pin та MOLEX
Тип кріпленняболтиболти
Габарити120х120х25 мм120х120х25 мм
Дата додавання на E-Katalogжовтень 2013липень 2013

Тип підшипника

Тип підшипника, що використовується у вентиляторі (вентиляторах) системи охолодження.

Підшипник – це деталь між віссю вентилятора, що обертається, і нерухомою основою, яка підтримує вісь і знижує тертя. У сучасних вентиляторах зустрічаються такі типи підшипників:

Ковзання. Дія таких підшипників заснована на прямому контакті між двома суцільними поверхнями, ретельно відполірованими для зниження тертя. Подібні пристосування прості, надійні і довговічні, проте ефективність їх досить невисока — кочення, а тим більше гідродинамічний і магнітний принцип роботи (див. нижче) забезпечують значно менше тертя.

Кочення. Також називаються «кульковими підшипниками» оскільки «посередниками» між віссю обертання і нерухомою основою є кульки (рідше — циліндричні ролики), закріплені в спеціальному кільці. При обертанні осі такі кульки котяться між нею і основою, за рахунок чого сила тертя виходить дуже невисокою — помітно нижче, ніж в підшипниках ковзання. З іншого боку, конструкція виходить дорожчою і складнішою, а за надійністю вона дещо поступається як тим же підшипникам ковзання, так і більш прогресивним гідродинамічним пристосуванням (див. нижче). Тому, хоча підшипники кочення в наш час досить широко поширені, проте в цілому вони зустрічаються помітно рідше згаданих різновидів.

Гідродинамічний. Підшипники цього типу заповнені спец...іальною рідиною; при обертанні вона створює прошарок, по якому ковзає рухома частина підшипника. Таким чином вдається уникнути безпосереднього контакту між твердими поверхнями і значно знизити тертя в порівнянні з попередніми типами. Також такі підшипники тихо працюють і вельми надійні. З їх недоліків можна відзначити порівняно високу вартість, проте на практиці цей момент нерідко виявляється непомітним на тлі ціни всієї системи. Тому даний варіант в наш час надзвичайно популярний, його можна зустріти в системах охолодження всіх рівнів — від бюджетних до прогресивних.

Магнітне центрування. Підшипники, засновані на принципі магнітної левітації: вісь, що обертається, «підвішена» в магнітному полі. Таким чином вдається (як і в гідродинамічних) уникнути контакту між твердими поверхнями і ще більше знизити тертя. Вважаються найбільш прогресивним типом підшипників, надійні і безшумні, проте коштують дорого.

Максимальні оберти

Найбільші оберти, на яких здатен працювати вентилятор системи охолодження; для моделей без регулятора обертів (див. нижче) у цьому пункті зазначається штатна швидкість обертання. У найбільш «повільних» сучасних вентиляторах максимальна швидкість не перевищує 1000 об/хв, в самих «швидких» може становити до 2500 об/хв і навіть більше .

Відзначимо, що даний параметр щільно пов'язаний з діаметром вентилятора (див. вище): чим менше діаметр, тим вище повинні бути оберти для досягнення потрібних значень повітряного потоку. При цьому швидкість обертання безпосередньо впливає на рівень шуму і вібрацій. Тому вважається, що потрібний об'єм повітря найкраще забезпечувати великими і порівняно «повільними» вентиляторами; а «швидкі» невеликі моделі має сенс застосовувати там, де компактність має вирішальне значення. Якщо ж порівнювати по швидкості моделі однакового розміру, то більш високі оберти позитивно позначаються на продуктивності, проте підвищують не тільки рівень шуму, а також ціну та енергоспоживання.

Регулятор обертів

Авто (PWM). Тип автоматичного регулятора, застосовуваний у системах охолодження для процесорів. Принцип такого регулювання полягає в тому, що автоматика відстежує поточне навантаження на CPU і підлаштовує під неї режим роботи вентилятора. Таким чином, система охолодження працює «на випередження»: вона фактично запобігає підвищення температури, а не усуває його (на відміну від описаного нижче терморегулятора). Недоліки подібної автоматики — висока вартість і додаткові вимоги до сумісності: функція PWM повинна підтримуватися материнською платою, а енергія на вентилятор повинна подаватися через роз'єм 4-pin (див. «Живлення»).

— Ручний. Ручний регулятор, що дозволяє виставити швидкість обертання за бажанням користувача. Головними його перевагами є можливість довільної підстроювання, так і надійність: автоматика не завжди реагує оптимально, і в продуктивних системах користувачеві іноді краще брати управління у свої руки. З іншого боку, ручне управління дорожче, а також складніше у застосуванні — воно потребує підвищеної уваги до стану системи, а при неуважному відношенні значно підвищується ймовірність перегріву.

— Ручний/авто. Поєднання вищенаведених двох систем: основне регулювання здійснюється за рахунок PWM, а ручний регулятор служить для обмеження максимальної швидкості обертання. Досить зручний і прогресивний варіант, що розширює можливості вирівнювання і при цьому не потребує постійного контролю температури, як при...чисто ручне налаштування. Щоправда, і коштує такий функціонал недешево.

— Перехідник (резистор). У цьому випадку регулювання обертів проводиться за рахунок зниження напруги, що подається на вентилятор. Для цього він підключається до блоку живлення через перехідник-резистор. Це своєрідна альтернатива ручному регулюванні: перехідники коштують недорого. З іншого боку, вони набагато менш зручні: єдиний спосіб змінити швидкість обертання при такому регулюванні — власне поміняти перехідник, а для цього доводиться відключати систему і лізти в корпус.

— Терморегулятор. Автоматичне регулювання обертів за даними з датчика, що вимірює температуру охолоджуваного компонента: при підвищенні температури інтенсивність роботи також підвищується, і навпаки. Такі системи простіше описаних вище PWM, до того ж можуть застосовуватися практично для будь-яких компонентів системи, не тільки для процесора. З іншого боку, вони мають велику інерцію і час реакції: якщо PWM запобігає нагрів заздалегідь, то терморегулятор спрацьовує від вже сталося підвищення температури.

Макс. повітряний потік

Максимальний повітряний потік, що може створити вентилятор системи охолодження; вимірюється в CFM - кубічних футах за хвилину.

Чим вище кількість CFM - тим ефективніший вентилятор. З іншого боку, висока продуктивність вимагає або великого діаметра (що позначається на габаритах та вартості), або високої швидкості (а вона підвищує рівень шуму та вібрацій). Тому при виборі має сенс не гнатися за максимальним повітряним потоком, а скористатися спеціальними формулами, що дозволяють розрахувати необхідне кількість CFM залежно від типу та потужності компонента, що охолоджується, та інших параметрів. Такі формули можна знайти у спеціальних джерелах. Що ж до конкретних чисел, то найбільш скромних системах продуктивність вбирається у 30 CFM, а найбільш потужних може становити понад 80 CFM.

Також варто враховувати, що фактичне значення повітряного потоку на найбільших оборотах зазвичай нижче за заявлений максимальний; докладніше див. «Статичний тиск».

Підсвічування

Наявність власного підсвічування в конструкції системи охолодження.

Підсвічування виконує чисто естетичну функцію – воно надає пристрою стильного зовнішнього вигляду, що добре поєднується з іншими компонентами в оригінальному дизайні. Завдяки цьому подібні системи охолодження особливо цінуються геймерами і любителями зовнішнього моддингу ПК — тим більше що колір освітлення може бути різним, а в найбільш прогресивних моделях навіть передбачається синхронізація підсвічування з іншими компонентами (див. нижче). З іншого боку, на ефективність і робочі характеристики дана функція не впливає, а на загальній вартості — неминуче позначається, іноді досить помітно. Тому, якщо зовнішній вигляд не грає для вас принципової ролі – оптимальним вибором, швидше за все, стане система охолодження без підсвічування.

Колір підсвічування

Колір підсвічування, встановленого в системі охолодження.

Детальніше про саме підсвічуванні див. вище. Тут же відзначимо, що в підсвічуванні сучасних систем охолодження зустрічається як один колір (найчастіше червоний або синій, рідше зелений, жовтий, білий або фіолетовий), так і багатобарвні системи типу RGB і ARGB. Вибір одноколірного підсвічування залежить в основному від естетичних переваг, а ось останніх двох різновидів варто торкнутися окремо.

Базовий принцип роботи і RGB, і ARGB-систем однаковий: в конструкції передбачається набір світлодіодів трьох базових кольорів – червоного (Red), зеленого (Green) і синього (Blue), а змінюючи кількість і яскравість увімкнених світлодіодів, можна змінювати не тільки інтенсивність, але і відтінок світіння. Різниця ж між цими варіантами полягає у функціоналі: системи RGB підтримують обмежений набір кольорів (зазвичай до півтора десятків, а то і менше), тоді як ARGB дають змогу вибирати практично будь-який відтінок з усього доступного колірного діапазону. При цьому і ті, і інші можуть підтримувати синхронізацію підсвічування (див. нижче); в цілому ця функція не є обов'язковою для RGB і ARGB систем, але застосовується вона м...айже виключно в них.

Рівень шуму

Стандартний рівень шуму, створюваного системою охолодження під час роботи. Зазвичай в цьому пункті вказується максимальний шум при штатному режимі роботи, без перевантажень і іншого «екстриму».

Відзначимо, що рівень шуму позначається в децибелах, а це нелінійна величина. Так що оцінювати фактичну гучність простіше всього по порівняльних таблиць. Ось така таблиця для значень, що зустрічаються в сучасних системах охолодження:

20 дБ — ледь чутний звук (тихий шепіт людини на відстані близько 1 м, звуковий фон на відкритому полі за містом в безвітряну погоду);
25 дБ — дуже тихо (звичайний шепіт на відстані 1 м);
30 дБ — тихо (настінний годинник). Саме такий шум за санітарними нормами є максимально допустимим для постійних джерел звуку в нічний час (з 23.00 до 7.00). Це означає, що якщо комп'ютером планується сидіти вночі — бажано, щоб гучність системи охолодження не перевищувала даного значення.
35 дБ — розмова упівголоса, звуковий фон в тихій бібліотеці;
40 дБ — розмова, порівняно неголосна, але вже в повний голос. Максимально допустимий за санітарними нормами рівень шуму для житлових приміщень в денний час, з 7.00 до 23.00. Втім, навіть найбільш галасливі системи охолодження зазвичай не дотягують до цього показника, максимум для подібної техніки становить близько 38 – 39 дБ.

Джерело живлення

Тип роз'єму живлення для системи охолодження. Живлення зазвичай виводиться через материнську плату, для цього найчастіше застосовуються такі роз'єми:

3-pin. Трьохштирьковий роз'єм; на сьогоднішній день вважається застарілим, проте все ще застосовується досить широко.

4-pin. Роз'єм з 4 штирьками. Його головною перевагою є можливість автоматичного регулювання швидкості обертання через PWM (докладніше див. «Регулятор обертів»).

Ці два стандарти взаємно сумісні: 3-pin вентилятор можна підключити в 4-pin роз'єм на материнській платі, і навпаки (хіба що PWM в обох варіантах буде недоступна).

Значно рідше зустрічаються такі варіанти, як 2-pin, що встановлюється в деякі недорогі вентилятори; 6-pin, застосовуваний в системах охолодження з RGB-підсвічуванням, що потребує досить потужного додаткового живлення; 7-pin і 8-pin, за своєю специфікою аналогічні 6-піновому роз'єму; а також живлення через стандартний штекер MOLEX, що передбачається в окремих корпусних вентиляторах.
Динаміка цін
Xilence XF046 часто порівнюють