Україна
Каталог   /   Фототехніка   /   Оптичні прилади   /   Мікроскопи

Порівняння Levenhuk 870T vs Levenhuk 850B

Додати до порівняння
Levenhuk 870T
Levenhuk 850B
Levenhuk 870TLevenhuk 850B
Порівняти ціни 2Порівняти ціни 2
ТОП продавці
Призначення
лабораторний
лабораторний
Типбіологічнийбіологічний
Принцип роботиоптичнийоптичний
Кратність збільшення40 – 2000 x40 – 2000 x
Метод дослідження
світлового поля
 
світлового поля
темного поля
Об'єктив і окуляр
Револьверна головка4 об'єктиви4 об'єктиви
Об'єктив
4x, 10x, 40x(s), 100x(s) oil
планахромат
4x, 10x, 40x(s), 100x(s) oil
планахромат
Окуляр
тринокуляр
парні PLAN WF10х, PLAN WF20х
нахил 30°
діаметр 23.2 мм
±5 D
бінокуляр
парні PLAN WF10х, PLAN WF20х
нахил 30°
діаметр 23.2 мм
±5 D
Поворотна головка окуляра
Міжзінична відстань55 – 75 мм55 – 75 мм
Конструкція
Предметний столик
рухомий
140x155 мм
рухомий
140x155 мм
Препаратоводій
Фокусування
груба/точна /коаксіальна; точна: 0,002 мм, груба: 25 мм/
груба/точна /коаксіальна; точна: 0,002 мм, груба: 25 мм/
підсвічуваннягалогеннагалогенна
Нижня підсвічування
КонденсорАббе, N. A.=1.25, темного поляАббе, N. A.=1.25, темного поля
Діафрагмаірисоваірисова
Світлофільтри
Функції та можливості
регулювання міжзіничної відстані
регулювання яскравості
освітлення по Келлеру
регулювання міжзіничної відстані
регулювання яскравості
освітлення по Келлеру
Інше
Джерело живлення
мережа 230 В
мережа 230 В
Матеріал корпусаметал
Дата додавання на E-Katalogвересень 2017вересень 2017

Метод дослідження

Методи дослідження, застосовні в даній моделі мікроскопа.

– Світлого поля. Найбільш відомий і широко застосовуваний метод світлової мікроскопії. Об'єкт, що розглядаєтья, при таких дослідженнях поміщається на світлий фон, на якому він виглядає темнішим. Відзначимо, що для дослідження можуть використовуватися різні способи освітлення: прямий наскрізний, косий, відбитий. Перший варіант (коли світло від лампи або дзеркала під предметним столиком просвічує зразок наскрізь) оптимально підходить для дослідження прозорих зразків, ключові деталі яких темніше загального фону; характерні приклади — тонкі зрізи тваринних і рослинних тканин. Косе світло схоже за специфікою застосування, при цьому воно дає сірий фон і поступається прямому за ефективністю підсвічування, однак забезпечує більш рельєфне зображення. Що стосується відбитого світла, то воно в даному разі незамінне при розгляданні непрозорих предметів: зразків руд та інших матеріалів, напівпровідникових пластин тощо. У будь-якому випадразіку світлопольна мікроскопія добре виявляє перш за все деталі, які помітно відрізняються за світлопропусканням або показником заломлення від навколишнього фону (при наскрізному освітленні), або дають помітні відсвіти/тіні (при відбитому).

– Темного поля. Свого роду протилежність світлопольному дослідженню: предмет, що розглядається, або окремі його елементи виходять світлішими, ніж навколишній фон. Однак це не просто «негатив» зображення, а саме окремий метод зі своїми о...собливостями. Підсвічування при темнопольній мікроскопії зазвичай наскрізне, а здійснюється воно специфічним чином: середина променя світла перекривається блендою, а світловий «циліндр», проходячи через лінзу-конденсор, перетворюється в «пісочний годинник». При цьому в найвужчому місці такого «годинника» знаходиться препарат, а в сторону об'єктива світловий конус розширюється так, що не потрапляє в оптику. Таким чином, користувач бачить в мікроскоп тільки світло, розсіяне препаратом, і темний фон навколо. Подібний спосіб дослідження, крім іншого дає змогу виявляти «плавні» деталі, які не виділяються різко на навколишньому тлі і не видимі при світлопольному дослідженні. Серед варіантів застосування темнопольної мікроскопії – робота з незабарвленими біологічними препаратами (клітини, зразки тканин, мікроорганізми), а також дослідження деяких прозорих матеріалів на дрібні дефекти поверхні.

– Фазового контрасту. Метод, застосовуваний для дослідження прозорих і безбарвних предметів з неоднорідною структурою, застосовуваний тоді, коли цю неоднорідність не можна виявити більш традиційною світлопольною мікроскопією. Ідея даного методу полягає в тому, що при проходженні через структури з різними показниками заломлення світло отримує різні зміни по фазі. Ці зміни не видно в звичайну оптику, проте їх цілком можна зробити видимими за допомогою спеціального обладнання — а саме конденсора і об'єктива особливої конструкції. Відповідно, таке обладнання обов'язково входить до комплекту мікроскопа.

— Флуоресцентний. Цей метод передбачає підсвічування спостережуваних об'єктів ультрафіолетом (тому також відомий як ультрафіолетова мікроскопія). Під дією такого освітлення ці об'єкти або їх окремі елементи починають світитися у видимому діапазоні, а фон залишається темним. При необхідності в препарат вводяться фарбувальні речовини, що поліпшують світність (характерний приклад — біологічні об'єкти, більшість з яких самі по собі флуоресціюють досить слабо). В окуляр мікроскопа зображення потрапляє через фільтр, який відсіває УФ-промені, але вільно пропускає світіння препарату.
Одна з головних особливостей флуоресцентної мікроскопії – висока роздільна здатність: вона дає змогу чітко бачити навіть дуже дрібні предмети, які недоступні погляду в звичайному видимому діапазоні. Фактично даний метод за роздільною здатністю знаходиться між оптичною та електронною мікроскопією; при цьому, на відміну від електронних і атомних мікроскопів, прилади з підтримкою УФ-методики дають змогу розглядати навіть «начинку» живих клітин і мікроорганізмів. А деякі спеціальні варіанти цієї методики дають змогу досягти вже не мікро-, а наноскопічних збільшень. Другий популярний спосіб застосування флуоресцентних досліджень – виявлення частинок, елементів, вкраплень тощо, які не видимі під звичайним світлом, але добре виділяються в ультрафіолеті. Характерний приклад – поверхня багатьох металів і сплавів.

Окуляр

Монокуляр. Окуляр з однією лінзою, в який можна дивитися тільки одним оком. З очевидних причин використовується тільки в біологічних мікроскопах (див. «Тип»). Перевагами монокулярів є насамперед менші розміри і вартість, ніж у інших різновидів; крім того, вони не вимагають підстроювання по міжзрачковій відстані. З іншого боку, постійно дивитися одним оком в окуляр втомлює, тому даний варіант слабо підходить для ситуацій, коли у мікроскоп доводиться заглядати часто і довго.

Бінокуляр. Здвоєний окуляр, в який можна дивитися відразу обома очима. Зазначимо, що така оптика застосовується не тільки в стереомікроскопах, першопочатково призначених для розглядання предмета через два об'єктива (див. «Тип»), але і в біологічних мікроскопах з одним об'єктивом. Річ у тім, що дивитися в оптичний прилад двома очима значно зручніше, ніж одним, очі при цьому менше навантажуються і втома настає не так швидко. Тому для серйозних завдань, пов'язаних з частим використанням мікроскопа, оптимальним варіантом є бінокуляри (або тринокуляри, див. нижче). Коштує така оптика дорожче монокулярної, проте це компенсується зручністю використання.

Тринокуляр. Різновид бінокуляра (див. відповідний пункт), доповнений третім оптичним каналом для спеціальної камери-відеоокуляра. Така камера, зазвичай, підключається до ПК або ноутбука; встановивши її в гніздо для третього ок...уляра, можна здійснювати фото - і відеозйомку, а також виводити зображення в реальному часі на екран комп'ютера. Одночасно з цим можна дивитися в мікроскоп і звичайним способом. Пристрої з тринокулярами дуже функціональні і універсальні, однак складні і коштують недешево.

— LCD-екран. Наявність у мікроскопа LCD-екрану, що замінює традиційний окуляр. До такого приладу не потрібно кожен раз нахилятися для перегляду зображення, що буває дуже зручно, якщо спостереження потрібно поєднувати з веденням записів та іншими подібними заняттями. Мікроскопи подібної конструкції зазвичай мають функцію фото - і відеозйомки, а також різні вбудовані інструменти — наприклад, масштабну сітку для оцінки розмірів видимих об'єктів, що виводиться прямо на екран. Крім того, зображення на екрані може бачити не тільки безпосередній користувач, але і всі, хто перебуває поруч; такі можливості бувають незамінні під час навчальних занять, консультацій, презентацій тощо. З іншого боку, подібні мікроскопи виходять громіздкими і дорогими.

— Кратність збільшення. Кратність збільшення, забезпечувана окуляром. Цей параметр, поряд з кратністю об'єктива, впливає на загальну кратність збільшення приладу (див. вище). Класичним варіантом для окулярів в мікроскопах вважається 10х, однак зустрічаються і більш високі значення. В комплект поставки може входити кілька окулярів, різної кратності — для зміни загального ступеня збільшення. Зустрічається позначення кратності з буквеним індексом, наприклад, WF10x. Це означає, що окуляр має розширене поле зору (WF — широке, EWF — екстра-широке, UWF — надшироке). – Нахил. Кут нахилу окуляра вказується щодо горизонталі — і лише в тих моделях, де окуляр не є вертикальним і не має регулювання за кутом нахилу (про те й інше див. нижче). Найбільш популярний варіант у подібних моделях – 45°, коли окуляр розташований, по суті, рівно посередині між строго вертикальним і горизонтальним положенням. Такий нахил досить зручний у різних ситуаціях — і якщо користувач сидить за столом, і якщо він стоячи нахиляється до мікроскопа, що стоїть на столі. Не такий популярний, але все ж дуже поширений варіант – 30°, що передбачає ближче до горизонталі положення окулярів; така конструкція оптимально підходить для роботи сидячи, але нахилятися до подібного приладу вже не дуже зручно. І навпаки, кут 60° відмінно підходить для роботи стоячи, але і тільки; тому цей варіант можна зустріти дуже рідко, буквально в поодиноких моделях.

– Регульований нахил. Можливість змінювати кут нахилу окуляра дає можливість підлаштовувати пристрій під конкретні ситуації. Так, для роботи, сидячи за столом, краще підходить невеликий нахил (близький до горизонталі), а якщо потрібно постійно нахилятися до мікроскопа — кут краще збільшити, піднявши окуляр ближче до вертикалі. Водночас регульований нахил ускладнює конструкцію приладу та збільшує її вартість, тому що на практиці реальна потреба у подібному функціоналі виникає не так часто. Також варто сказати, що для спрощення конструкції в деяких моделях похилим робиться весь встановлений на основі прилад – включаючи об'єктив і предметний столик. Однак такі пристрої мають інший недолік: нахил предметного столика прямо пов'язаний з нахилом окуляра, і якщо потрібно розмістити препарат строго горизонтально – то оптику неминуче доведеться встановити вертикально, без інших варіантів. Тому регульований нахил (в усіх варіантах) у час зустрічається досить рідко.

– Без нахилу. Ще більш рідкісний і специфічний варіант: окуляр і вся оптична система в таких моделях розташовані вертикально. У подібний мікроскоп не дуже зручно дивитися, навіть стоячи над робочим столом, а для сидячого становища такі моделі взагалі практично непридатні. З іншого боку, у цієї конструкції є і свої переваги. Насамперед вона виходить простішою і надійнішою, ніж у аналогах із похилим окуляром — завдяки відсутності додаткових дзеркал та призм; а предметний столик у таких пристроях завжди розташований горизонтально, що буває важливо при роботі з деякими препаратами.

— Посадковий діаметр. Номінальний діаметр окуляра, використовуваного в мікроскопі, а також діаметр отвору в тубусі, призначеного для встановлення окуляра. В сучасних мікроскопах використовується кілька стандартних діаметрів, зокрема, 23 і 27 мм. На практиці цей параметр необхідний насамперед у тому випадку, якщо планується купувати запасні або змінні окуляри до мікроскопа, або якщо у господарстві» вже є окуляр, і потрібно оцінити його сумісність з даною моделлю.

— Діоптрійна корекція. Діапазон діоптрійної корекції, передбачений в окулярі. Така корекція застосовується для того, щоб короткозора або далекозора людина могла дивитися в мікроскоп без окулярів або контактних лінз. У більшості моделей з даною функцією діапазон корекції становить близько 5 діоптрій в обидві сторони; це дає змогу використовувати мікроскоп при невисокому і середньому ступені короткозорості/далекозорості.

Поворотна головка окуляра

Дана особливість означає, що окуляр, яким оснащений мікроскоп, здатний повертатися навколо вертикальної осі — простіше кажучи, праворуч і ліворуч. Як правило, діапазон повороту становить повні 360°, але для повної гарантії цей момент краще уточнити окремо.

Поворотна головка окуляра не впливає на основні характеристики і можливості, однак забезпечує додаткову зручність для користувача: окуляр можна розгортати в оптимальне положення залежно від ситуації. Це може бути корисно, наприклад, коли два студента або лаборанта, що сидять поруч, використовують на двох один мікроскоп з препаратом — за необхідності кожен може повертати окуляр до себе, не рухаючи з місця весь прилад. Зворотна сторона цієї переваги – деяке ускладнення конструкції і збільшення її ціни.

Світлофільтри

Наявність світлофільтрів у комплекті мікроскопа.

Світлофільтри встановлюються в систему освітлення; вони можуть бути змінними або вбудованими (зазвичай на револьверному диску). У будь-якому разі такі пристосування змінюють характеристики світла, підлаштовуючи його під особливості ситуації. Види і призначення світлофільтрів можуть бути різними, так само як їх асортимент в комплекті; ось деякі з найбільш поширених варіантів:

– Синій кольоровий. Корисний в тих ситуаціях, коли для підсвічування використовується світло від лампи розжарювання або «галогенки». Такий фільтр вирівнює колірну температуру (баланс білого), роблячи відтінки кольорів більш холодними і забезпечуючи природну передачу кольору; це особливо важливо для мікрофотографії, оскільки для отримання якісних знімків правильно виставлений баланс білого критично необхідний.

– Жовтий кольоровий. Свого роду протилежність синьому: знижує колірну температуру, надаючи зображенню більш теплий відтінок. Іноді це також буває корисно для регулювання балансу білого, однак у жовтих фільтрів є ще одна важлива область застосування: вони добре підходять для виявлення дефектів на металевих поверхнях.

– Зелений кольоровий. Ахроматні і планахроматні об'єкти, що встановлюються в більшість сучасних мікроскопів, найкраще усувають аберації в зеленій частині спектра. З урахуванням цього і застосовуються подібні фільтри: зображення, пофарбоване в зелений відтінок,...має найменше видимих спотворень. Крім того, більшість об'єктивів для фазово-контрастної мікроскопії також найбільш ефективні в зеленій частині спектра (хоча можливі й винятки).

– Матовий (дифузор). Фільтри білого забарвлення, які не змінюють відтінок світла, проте забезпечують його додаткове розсіювання. Це буває корисно, зокрема, при роботі з об'єктами невисокої кратності.

— Нейтральний. Фільтри в різних відтінках сірого кольору. Використовуються для того, щоб знизити інтенсивність освітлення, не змінюючи при цьому інших його характеристик. Подібні пристосування можуть особливо стати в нагоді при фотозйомці — а саме якщо камера не має досить короткої витримки. Відзначимо, що аналогічного ефекту можна досягти за допомогою діафрагми мікроскопа, однак при зйомці це не завжди оптимальний варіант. Так, звуження діафрагми зменшує поле зору і збільшує глибину різкості (останнє теж не завжди бажано), тоді як світлофільтри не впливають на ці параметри; до того ж в деяких ситуаціях навіть найвужча діафрагма може виявитися недостатньо «темною».

– Світлофільтри для забарвлених препаратів. Покращують видимість деталей, пофарбованих в той чи інший колір. Такі пристосування особливо популярні при дослідженнях біологічних препаратів: саме вони найчастіше обробляються барвниками, і вони ж найбільш схильні до вицвітання барвників, що ускладнює перегляд в звичайному освітленні. Відзначимо, що світлофільтри цього типу, на відміну від описаних вище кольорових, не фарбують все зображення в певний колір, а тільки приглушують всі інші кольори, крім свого «рідного».

— Флуоресцентний. Фільтри, що застосовуються у флуоресцентній мікроскопії. Діляться на два види — збуджуючі (виділяють із загального спектру підсвічування УФ-випромінювання для освітлення препарату) і замикаючі (захищають очі користувача від ультрафіолету і водночас пропускають флуоресцентне світіння препарату).
Динаміка цін
Levenhuk 870T часто порівнюють