Dark mode
Укр|Eng|Рус
Ukraine
Catalog   /   Computing   /   Components   /   Sound Cards

Comparison Creative Sound Blaster X4 vs Asus Xonar U7 MKII

Add to comparison
Creative Sound Blaster X4
Asus Xonar U7 MKII
Creative Sound Blaster X4Asus Xonar U7 MKII
Compare prices 10Compare prices 48
User reviews
1
0
0
1
TOP sellers
Main
Support for Super X-Fi technology.
The card is able to encode in Dolby Digital Live and transmit this track to the receiver via the optical output. The Sound Blaster X3 is compatible with Windows and macOS PCs, as well as Sony PlayStation 4 and Nintendo Switch consoles.
Operation in 192 kHz/24 bit mode. 7.1 format support. Proprietary Sonic Studio software. Game utility Sonic Radar Pro. Support for Hyper Grounding technology. Support for high impedance headphones.
Featuresgaminggaming
Specs
Typeexternalexternal
InterfaceUSBUSB
Channels7.17.1
AudiochipC-Media 6632AX
ASIO
Mac compatibility
DAC
DAC resolution24 bit24 bit
Max. sampling rate192 kHz192 kHz
Dynamic Range114 dB110 dB
Signal-to-noise ratio114 dB
ADC
ADC resolution24 bit24 bit
Max. sampling rate192 kHz192 kHz
Dynamic range104 dB110 dB
Signal-to-noise ratio110 dB
More features
headphones amplifier
headphones amplifier
Inputs
mini-Jack (3.5 mm)31
Outputs
mini-Jack (3.5 mm)44
RCA2
Optical S/P-DIF1
Coaxial S/P-DIF1
Added to E-Catalogdecember 2021march 2019

Audiochip

Brand of the audio chip installed in the sound card.

The audio chip is one of the most important parts of a sound card, a kind of "heart" of the whole circuit, and it is on its characteristics that the sound quality and other capabilities of a particular model largely depend. Knowing the brand of the chip, you can easily find various information on it — official specifications, test results, reviews, etc. — and based on this, draw a conclusion to what extent this sound card is able to meet your requirements. Of course, for ordinary video cards (see "View") there is no need to delve into such details, but when choosing a gaming or audiophile model, they can be very useful.

ASIO

Sound card compatible with ASIO standard.

ASIO (an abbreviation for Audio Stream Input/Output, i.e. “audio stream input-output”) is a technology designed for professional work with sound in the Windows environment; in particular, it reduces latency and improves the accuracy of the audio stream. If you do not plan to seriously engage in recording, mixing tracks, etc., most likely you will not need this function, but for musicians, sound engineers and other similar professionals, it can be very useful. The ASIO standard provides both software and hardware requirements; therefore, to fully use it, you must have a compatible audio card.

Dynamic Range

The dynamic range of a DAC is the ratio between the loudest sound that the converter can produce and the quietest. The wider the dynamic range — the richer the sound will be, the lower the likelihood that quiet sounds that complement the overall picture will be muffled during conversion. At the same time, it is worth noting that almost all modern sound cards provide a dynamic range that is quite sufficient for comfortable everyday use, and in many models this parameter may not be indicated at all. It is worth paying attention to it when choosing an advanced specialized audio card — for example, a gaming one (see "View"). The minimum for professional models is 90 dB, but in fact, among similar solutions, this figure is usually 120 dB or more.

Signal-to-noise ratio

This parameter determines the ratio of the "clean" sound produced by the DAC at the output to all extraneous noise. As such, it is a pretty strong indicator of sound purity. According to the signal-to-noise ratio, DACs in modern sound cards can be divided as follows:

up to 90 dB — initial level;
90-100 dB — average level, advanced "home" models;
more than 100 dB — professional level.

Dynamic range

The dynamic range of an ADC is the ratio between the loudest and quietest sound that the converter is able to perceive and process. The larger this parameter, the more complete the picture of the sound converted to digital format will be, the less quiet details (which, nevertheless, affect the overall sound) will remain when digitizing “behind the scenes”. At the same time, we note that this parameter is critical only for professional recording, and therefore it is indicated in the characteristics quite rarely, usually only in models of the corresponding specialization (in particular, audio interfaces, see "View").

Signal-to-noise ratio

The signal-to-noise ratio provided by the analogue-to-digital converter (ADC) of the sound card in the processed signal. For more information about this ratio, see the paragraph of the same name above. Here we note that in domestic use it does not play a decisive role, but if you plan to record sound in good quality, you should choose a card with a high value of this indicator.

mini-Jack (3.5 mm)

The number of inputs in the design of the sound card using 3.5 mm mini-Jack connectors. This connector, usually used to transmit an analogue signal, is one of the most popular in modern audio technology. Speaking of inputs, it's worth noting that most computer microphones are designed to plug into the 3.5mm jack; this also applies to separate microphone plugs on headsets. At the same time, the specific purpose of the mini-jack sockets in different sound cards may be different; Moreover, in some models, the same socket can be reconfigured and even change its purpose (from input to output and vice versa). These points, usually, are specified in the characteristics.

Using a simple adapter, you can also connect a 6.35 mm plug (Jack) to the 3.5 mm jack.

RCA

The number of outputs with RCA connectors(colloquially known as "tulips") in the sound card design. Like the Jack and mini-Jack interfaces, RCA is designed to carry an analogue signal, however, only one channel can be transmitted on one cable. On the one hand, this improves the sound quality, on the other hand, two connectors are required to transmit a stereo signal instead of one. Therefore, RCA is practically not used in headphones and is very rare in "purely computer" speakers, but it is quite popular in home-class acoustic systems and can be useful if you are planning to build such a speaker based on a computer.

Separately, we note that this output should not be confused with coaxial S / P-DIF (see below): although the latter also uses an RCA jack, however, it is fundamentally different in signal format and has specific cable requirements.

Optical S/P-DIF

The number of S/P-DIF optical outputs provided in the design of the sound card.

S/P-DIF is a digital audio transmission standard, including multichannel, quite widespread in home acoustics. At the hardware level, this standard has two versions — coaxial (see below) and optical, which is discussed here. The TOSLINK fiber optic cable used for this type of connection is highly resistant to interference: electromagnetic pickups do not interact with the light pulses that transmit the signal. On the other hand, such a cable is more expensive than coaxial electrical wire and requires careful handling — strong pressure or a kink can damage the fiber.
Price graph
Creative Sound Blaster X4 often compared
Asus Xonar U7 MKII often compared