Dark mode
Укр|Eng|Рус
Ukraine
Catalog   /   Computing   /   Networking   /   Wi-Fi Equipment

Comparison MikroTik cAP XL ac vs MikroTik cAP ac

Add to comparison
MikroTik cAP XL ac
MikroTik cAP ac
MikroTik cAP XL acMikroTik cAP ac
Compare prices 63Compare prices 61
TOP sellers
Main
Operating system RouterOS, L4.
Complete with interchangeable square body.
Product typeaccess pointaccess point
Data input (WAN-port)
Ethernet (RJ45)
Wi-Fi
Ethernet (RJ45)
Wi-Fi
Wireless Wi-Fi connection
Wi-Fi standards
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Frequency band
2.4GHz
5 GHz
2.4GHz
5 GHz
Operating rangesdual-band (2.4 GHz and 5 GHz)dual-band (2.4 GHz and 5 GHz)
Wireless speed 2.4 GHz300 Mbps
Wireless speed 5 GHz867 Mbps
Connection and LAN
LAN
2 ports
1 Gbps
2 ports
1 Gbps
Antenna and transmitter
Number of antennas4
Antenna typeinternalinternal
Gain6 dBi
2.4 GHz antennas2
5 GHz antennas2
Transmitter power26 dBm26 dBm
Signal strength 2.4 GHz26 dBm23 dBm
Signal strength 5 GHz26 dBm18 dBm
Hardware
CPUQualcomm IPQ-4018
CPU cores4
Clock Speed0.72 GHz
RAM128 MB
Flash memory16 MB
Functions
Features
bridge mode
repeater
firewall
CLI (Telnet)
bridge mode
repeater
 
 
More features
VPN
DDNS
DMZ
 
 
 
Security
Safety standards
WPA
WEP
WPA2
WPA
WEP
WPA2
General
PoE (input)802.3atpassive
PoE (output)passivepassive
Power consumption24 W24 W
Operating temperature-40 °C ~ +70 °C-40 °C ~ +50 °C
Dimensions191x191x42 mm136x30x136 mm
Color
Added to E-Catalogmarch 2023may 2018

Wireless speed 2.4 GHz

The maximum speed provided by the device when communicating wirelessly in the 2.4 GHz band.

This range is used in most modern Wi-Fi standards (see above) - as one of the available or even the only one. The theoretical maximum for it is 600 Mbit. In reality, Wi-Fi at a frequency of 2.4 GHz is used by a large number of client devices, from which congestion of data transmission channels emerges. Also, the number of antennas affects the speed performance of the equipment. It is possible to achieve the speed declared in the specification only in an ideal situation. In practice, it can be noticeably smaller (often by several times), especially with an abundance of wireless technology simultaneously connected to the equipment. The maximum speed at 2.4 GHz is specified in the characteristics of specific models to understand the real capabilities of Wi-Fi equipment. As for the numbers, according to the capabilities in the 2.4 GHz band, modern equipment is conditionally divided into models with speeds up to 500 Mbit inclusive and over 500 Mbit.

Wireless speed 5 GHz

The maximum speed supported by the device when communicating wirelessly in the 5 GHz band.

This range is used in Wi-Fi 4, Wi-Fi 6 and Wi-Fi 6E as one of the available bands, in Wi-Fi 5 as the only one (see "Wi-Fi Standards"). The maximum speed is specified in the specifications in order to indicate the real capabilities of specific equipment - they can be noticeably more modest than the general capabilities of the standard. Also, in fact, it all depends on the generation of Wi-Fi. For example, devices with Wi-Fi 5 support can theoretically deliver up to 6928 Mbit (using eight antennas), with Wi-Fi 6 support up to 9607 Mbit (using the same eight spatial streams). The maximum possible communication speed is achieved under certain conditions, and not every model of Wi-Fi equipment fully satisfies them. Specific figures are conditionally divided into several groups: the value up to 500 Mbit is rather modest, many devices support speeds in the range of 500 - 1000 Mbit, indicators of 1 - 2 Gbps can be attributed to the average, and the most advanced models in class provide a data exchange rate of over 2 Gbps.

Number of antennas

The total number of antennas (of all types — see below) provided in the design of the device.

In modern Wi-Fi equipment, this indicator can be different: in addition to the simplest devices with 1 antenna, there are models where this number is 2, 3, 4 and even more. The point of using multiple antennas is twofold. Firstly, if there are several external devices per antenna, they have to share the bandwidth among themselves, and the actual communication speed for each subscriber drops accordingly. Secondly, such a design may also be required when communicating with one external device — to work with MU-MIMO technology (see below), which allows you to fully realize the capabilities of modern Wi-Fi standards.

Anyway, more antennas, usually, means a more advanced and functional device. On the other hand, this parameter significantly affects the cost; so specifically looking for equipment with numerous antennas makes sense mainly when the speed and stability of communication are critical.

Note that antennas intended for mobile communications may also be considered in this clause. So when choosing a model with support for mobile networks, it's ok to clarify this point.

Gain

Gain provided by each device antenna; if the design provides for antennas with different characteristics (a typical example is both external and internal antennas), then the information, usually, is indicated by the highest value.

Amplification of the signal in this case is provided by narrowing the radiation pattern — just as in flashlights with adjustable beam width, reducing this width increases the illumination range. The simplest omnidirectional antennas narrow the signal mainly in the vertical plane, "flattening" the coverage area so that it looks like a horizontal disk. In turn, directional antennas (mainly in specialized access points, see "Device type") create a narrow beam that covers a very small area, but provides a very solid gain.

Specifically, the gain describes how powerful the signal is in the main direction of the antenna compared to an perfect antenna that spreads the signal evenly in all directions. Together with the power of the transmitter (see below), this determines the total power of the equipment and, accordingly, the efficiency and range of communication. Actually, to determine the total power, it is enough to add the gain in dBi to the transmitter power in dBm; dBi and dBm in this case can be considered as the same units (decibels).

In general, such data is rarely required by the average user, but it can be useful in some specific situations that specialists have to deal with. Detailed calculation methods for suc...h situations can be found in special sources; here we emphasize that it does not always make sense to pursue a high antenna gain. First, as discussed above, this comes at the cost of narrowing the scope, which can be inconvenient; secondly, too strong a signal is also often undesirable, for more details see "Transmitter power".

2.4 GHz antennas

The total number of antennas in the router that are responsible for communication in the 2.4 GHz band. For details about the number of antennas, see "Total antennas", about the range — "Frequency range".

5 GHz antennas

The total number of antennas in the router that are responsible for communication in the 5 GHz band. For details about the number of antennas, see "Total antennas", about the range — "Frequency range".

Signal strength 2.4 GHz

The power of the transmitter installed in the equipment when operating in the 2.4 GHz band (see "Frequency Band").

This parameter directly affects the overall power and, accordingly, the communication efficiency. For more on this, see p. "Transmitter power" above, but here we separately emphasize that high power is not always required, and in some cases it is frankly harmful.

Signal strength 5 GHz

The power of the transmitter installed in the equipment when operating in the 5 GHz band (see "Frequency Band").

This parameter directly affects the overall power and, accordingly, the communication efficiency. For more on this, see p. "Transmitter power" above, but here we separately emphasize that high power is not always required, and in some cases it is frankly harmful.

CPU

The model of the processor installed in the device. The processor is responsible for processing network traffic and running software. Knowing its name, you can get more detailed data on the speed capabilities of the equipment and understand how much such a powerful or, on the contrary, mediocre element is needed on board. In new models of Wi-Fi equipment, coprocessors or so-called NPU modules are often installed, which relieve the load from the main processor.

Most often, Wi-Fi equipment is equipped with processors from Broadcom, MediaTek, Realtek and Qualcomm.
Price graph