Dark mode
Укр|Eng|Рус
Ukraine
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison Hotpoint-Ariston Alteas One+ Net 24 24.4 kW vs Hotpoint-Ariston Alteas One Net 24 24.4 kW

Add to comparison
Hotpoint-Ariston Alteas One+ Net 24 24.4 kW
Hotpoint-Ariston Alteas One Net 24 24.4 kW
Hotpoint-Ariston Alteas One+ Net 24 24.4 kWHotpoint-Ariston Alteas One Net 24 24.4 kW
Compare prices 23Compare prices 4
TOP sellers
Main
The new generation of the Alteas One series. Smartphone or PC control.
Smartphone or PC control
Energy sourcegasgas
Installationwallwall
Typedual-circuit (heating and DHW)dual-circuit (heating and DHW)
Heating area195 m²195 m²
Condensing
Technical specs
Heat output24.4 kW24.4 kW
Min. heat output2.5 kW2.5 kW
Power supply230 V230 V
Power consumption80 W80 W
Coolant min. T35 °С35 °С
Coolant max. T82 °С82 °С
Heating circuit max. pressure3 bar3 bar
DHW circuit max. pressure7 bar7 bar
Consumer specs
DHW min. T36 °С36 °С
DHW max. T60 °С60 °С
Performance (ΔT=25°C)15.4 L/min12.8 L/min
Performance (ΔT ~30 °C)11 L/min11 L/min
Wi-Fi
"Summer" mode
Warm start
Circulation pump
Control busBus BridgeNetBus BridgeNet
Programmable thermostat
Boiler specs
Efficiency107.3 %107.4 %
Combustion chamberclosed (turbocharged)closed (turbocharged)
Flue diameter60/100 mm60/100 mm
Max. gas consumption2.75 m³/h2.75 m³/h
Expansion vessel capacity8 L8 L
Expansion vessel pressure1 bar1 bar
Connections
Mains water intake1/2"1/2"
DHW flow1/2"1/2"
Gas supply3/4"3/4"
Central heating flow3/4"3/4"
Central heating return3/4"3/4"
Safety
Safety systems
gas pressure drop
water overheating
flame loss
draft control
water circulation failure
frost protection
gas pressure drop
water overheating
flame loss
draft control
water circulation failure
frost protection
More specs
Glass panel
Dimensions (HxWxD)770x400x315 mm770x400x315 mm
Weight32 kg32.7 kg
Added to E-Catalogmarch 2023march 2018

Performance (ΔT=25°C)

The performance of a dual-circuit boiler in the DHW supply mode when the water is heated by 25 °C above the initial temperature.

Performance is the maximum amount of hot water the unit can produce in a minute. It depends not only on the power of the heater as such, but also on how much water needs to be heated: the higher the temperature difference ΔT between cold and heated water, the more energy is required for heating and the smaller the volume of water with which the boiler can handle in this mode. Therefore, the performance of dual-circuit boilers is indicated for certain options ΔT — namely 25 °C, 30 °C and/or 50 °C. And it’s worth choosing according to this indicator, taking into account the initial water temperature and taking into account what kind of hot water demand there is at the installation site of the boiler (how many points of water intake, what are the temperature requirements, etc.). Recommendations on this subject can be found in special sources.

We also recall that water begins to be felt by a person as warm somewhere from 40 °C, as hot — somewhere from 50 °C, and the temperature of hot water in central water supply systems (according to official standards) is at least 60 °C. Thus, for the boiler to operate in the ΔT=25 °C mode and produce at least warm water at 40 °C, the initial temperature of cold water must be at least 15 °C (15+25=40 °C). It is a rather high value — for example, in a centralized water supply system, cold water...reaches 15 °C, except in summer, when the water pipes warm up noticeably; the same applies to water supplied from wells. So this performance is a very conditional value. The boiler does not work so often with a temperature difference of 25 °C. Nevertheless, the data for ΔT=25°C is still often given in the specifications — including for advertising purposes since it is in this mode that the performance figures are the highest. In addition, this information may be useful if the boiler is used as a pre-heater, and heating to operating temperature is provided by another device, such as an electric boiler or instantaneous water heater.

Efficiency

The efficiency of the boiler.

For electric models (see "Energy source"), this parameter is calculated as the ratio of net power to consumed; in such models, indicators of 98 – 99% are not uncommon. For other boilers, the efficiency is the ratio of the amount of heat directly transferred to the water to the total heat amount released during combustion. In such devices, the efficiency is lower than in electric ones; for them, a parameter of more than 90% is considered good. An exception is gas condensing boilers (see the relevant paragraph), where the efficiency can even be higher than 100%. There is no violation of the laws of physics here. It is a kind of advertising trick: when calculating the efficiency, an inaccurate method is used that does not take into account the energy spent on the formation of water vapour. Nevertheless, formally everything is correct: the boiler gives out more thermal energy to the water than is released during the combustion of fuel since condensation energy is added to the combustion energy.
Price graph
Hotpoint-Ariston Alteas One+ Net 24 often compared
Hotpoint-Ariston Alteas One Net 24 often compared