Dark mode
Укр|Eng|Рус
Ukraine
Catalog   /   Computing   /   Components   /   Computer Cooling

Comparison Deepcool AG500 ARGB Black vs be quiet! Dark Rock Pro 4

Add to comparison
Deepcool AG500 ARGB Black
be quiet! Dark Rock Pro 4
Deepcool AG500 ARGB Blackbe quiet! Dark Rock Pro 4
Compare prices 35
from 5 862 ₴
Expecting restock
User reviews
TOP sellers
out of stock
Main
The maximum allowable RAM height is 44mm.
A special LGA 1700 mount kit can be purchased or obtained from the manufacturer at https://www.bequiet.com/ru/contact/lga1700mounting
Main specs
Featuresfor CPUfor CPU
Product typeair coolerair cooler
Air flow directionsideways (dispersion)sideways (dispersion)
Double-tower
Max. TDP240 W250 W
Fan
Number of fans12
Fan size120 mm135 mm
BearinghydrodynamicFluid Dynamic Bearing
Min. RPM300 rpm
Max. RPM1850 rpm1200 rpm
Speed controllerauto (PWM)auto (PWM)
Max. air flow67.88 CFM119 CFM
Static pressure2.04 mm H2O
replaceable
Min noise level13 dB
Noise level29 dB24 dB
Power source4-pin4-pin
Radiator
Heat pipes57
Heatpipe contactstraightindirect
Heatsink materialaluminium / copperaluminium / copper
Plate materialaluminiumnickel-plated copper
RAM space40 mm
Socket
 
AMD AM4
AMD AM5
Intel 1150
Intel 1155/1156
 
 
 
Intel 1151 / 1151 v2
Intel 1200
Intel 1700 / 1851
AMD AM2/AM3/FM1/FM2
AMD AM4
AMD AM5
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
Intel 1700 / 1851
General
Lighting
Lighting colourARGB
Lighting syncmulti compatibility
Mount typebilateral (backplate)bilateral (backplate)
Dimensions125x95x155 mm124x136x163 mm
Height155 mm163 mm
Weight861 g1130 g
Added to E-Catalogdecember 2022july 2018

Double-tower

A feature found in some active CPU coolers (see "Intended Use").

For tower arrangements in general, see Airflow Blowing below. And the double-tower design means that the cooler has two working blocks — that is, two fans and two radiators. Accordingly, there are more heat pipes in the design than in single-tower models — at least 4 of them, and more often 5 – 6 or even more. Such an arrangement can significantly increase the cooling efficiency; on the other hand, it also significantly affects the dimensions, weight and price.

Max. TDP

The maximum TDP provided by the cooling system. Note that this parameter is indicated only for solutions equipped with heatsinks (see "Type"); for separately made fans, the efficiency is determined by other parameters, primarily by the air flow values (see above).

TDP can be described as the amount of heat that a cooling system is able to remove from a serviced component. Accordingly, for the normal operation of the entire system, it is necessary that the TDP of the cooling system is not lower than the heat dissipation of this component (heat dissipation data is usually indicated in the detailed characteristics of the components). And it is best to select coolers with a power margin of at least 20 – 25% — this will give an additional guarantee in case of forced operation modes and emergency situations (including clogging of the case and reduced air exchange efficiency).

As for specific numbers, the most modest modern cooling systems provide TDP up to 100 W, the most advanced — up to 250 W and even higher.

Number of fans

The number of fans in the design of the cooling system. More fans provide higher efficiency (all else being equal); on the other hand, the dimensions and the noise generated during operation also increase accordingly. Also, note that other things being equal, a smaller number of large fans is considered more advanced than numerous small ones; see "Fan diameter" for details.

Fan size

The diameter of the fan(s) used in the cooling system.

In general, larger fans are considered more advanced than smaller ones: they allow you to create a powerful air flow at a relatively low speed and low noise level. On the other hand, a large diameter means large dimensions, weight and price. As for specific figures, 40 mm and 60 mm models are considered miniature, 80 mm and 92 mm are medium, 120 mm and 135 / 140 mm are large, and even 200 mm fans are found in the most powerful case systems.

Bearing

The type of bearing used in the cooling fan(s).

The bearing is the piece between the rotating axle of the fan and the fixed base that supports the axle and reduces friction. The following types of bearings are found in modern fans:

Sliding. The action of these bearings is based on direct contact between two solid surfaces, carefully polished to reduce friction. Such devices are simple, reliable and durable, but their efficiency is rather low — rolling, and even more so the hydrodynamic and magnetic principle of operation (see below), provide much less friction.

Rolling. They are also called "ball bearings", since the "intermediaries" between the axis of rotation and the fixed base are balls (less often — cylindrical rollers) fixed in a special ring. When the axis rotates, such balls roll between it and the base, due to which the friction force is very low — noticeably lower than in plain bearings. On the other hand, the design turns out to be more expensive and complex, and in terms of reliability it is somewhat inferior to both the same plain bearings and more advanced hydrodynamic devices (see below). Therefore, although rolling bearings are quite widespread nowadays, however, in general, they are much less common than the mentioned varieties.

Hydrodynamic. Bearings of this type are filled with a special liquid; wh...en rotated, it creates a layer on which the moving part of the bearing slides. In this way, direct contact between hard surfaces is avoided and friction is significantly reduced compared to previous types. Also, these bearings are quiet and very reliable. Of their shortcomings, a relatively high cost can be noted, but in fact this moment often turns out to be invisible against the background of the price of the entire system. Therefore, this option is extremely popular nowadays, it can be found in cooling systems of all levels — from low-cost to advanced.

Magnetic centering. Bearings based on the principle of magnetic levitation: the rotating axis is "suspended" in a magnetic field. Thus, it is possible (as in hydrodynamic ones) to avoid contact between solid surfaces and further reduce friction. Considered the most advanced type of bearings, they are reliable and quiet, but expensive.

Min. RPM

The lowest speed at which the cooling fan is capable of operating. Specified only for models with speed control (see below).

The lower the minimum speed (with the same maximum) — the wider the speed control range and the more you can slow down the fan when high performance is not needed (such a slowdown allows you to reduce energy consumption and noise level). On the other hand, an extensive range affects the cost accordingly.

Max. RPM

The highest speed at which the cooling system fan is capable of operating; for models without a speed controller (see below), this item indicates the nominal rotation speed. In the "slowest" modern fans, the maximum speed does not exceed 1000 rpm, in the "fastest" it can be up to 2500 rpm and even more.

Note that this parameter is closely related to the fan diameter (see above): the smaller the diameter, the higher the speed must be to achieve the desired airflow values. In this case, the rotation speed directly affects the level of noise and vibration. Therefore, it is believed that the required volume of air is best provided by large and relatively "slow" fans; and it makes sense to use "fast" small models where compactness is crucial. If we compare the speed of models of the same size, then higher speeds have a positive effect on performance, but increase not only the noise level, but also the price and power consumption.

Max. air flow

The maximum airflow that a cooling fan can create; measured in CFM — cubic feet per minute.

The higher the CFM number, the more efficient the fan. On the other hand, high performance requires either a large diameter (which affects the size and cost) or high speed (which increases the noise and vibration levels). Therefore, when choosing, it makes sense not to chase the maximum air flow, but to use special formulas that allow you to calculate the required number of CFM depending on the type and power of the cooled component and other parameters. Such formulas can be found in special sources. As for specific numbers, in the most modest systems, the performance does not exceed 30 CFM, and in the most powerful systems it can be up to 80 CFM and even more.

It is also worth considering that the actual value of the air flow at the highest speed is usually lower than the claimed maximum; see Static Pressure for details.

Static pressure

The maximum static air pressure generated by the fan during operation.

This parameter is measured as follows: if the fan is installed on a blind pipe, from which there is no air outlet, and turned on for blowing, then the pressure reached in the pipe will correspond to the static one. In fact, this parameter determines the overall efficiency of the fan: the higher the static pressure (ceteris paribus), the easier it is for the fan to “push” the required amount of air through a space with high resistance, for example, through narrow slots of a radiator or through a case full of components.

Also, this parameter is used for some specific calculations, however, these calculations are quite complex and, usually, are not necessary for an ordinary user — they are associated with nuances that are relevant mainly for computer enthusiasts. You can read more about this in special sources.
Price graph
Deepcool AG500 ARGB Black often compared
be quiet! Dark Rock Pro 4 often compared