Укр|Eng|Рус
Ukraine
Catalog   /   Tools & Gardening   /   Construction Power Tools   /   Paint Sprayers

Comparison Yato YT-2357 vs Bosch PFS 5000 E

Add to comparison
Yato YT-2357
Bosch PFS 5000 E
Yato YT-2357Bosch PFS 5000 E
Compare prices 13Compare prices 32
User reviews
0
0
0
2
TOP sellers
Main
Comes with 2 plastic jars of 1000 mL
Devicepaint Sprayerpaint Sprayer
Typepneumaticelectric
Specs
Power consumption1200 W
Rated pressure3 bar
Air consumption220 L/min
Paint consumption0.5 L/min
Nozzle size0.8 mm2.4 mm
Sprayingpneumaticpneumatic
Spray systemHVLP (High Volume Low Pressure)
Containertopbottom
Container volume100 mL1000 mL
Tank materialplasticplastic
Replaceable container
General
Remote compressor
Hose length4 m
Weight5.2 kg
Added to E-Catalogdecember 2016september 2015

Type

The type is indicated by the energy source from which the spray gun operates. Nowadays, you can find pneumatic, electric( mains and battery), as well as mechanical and gasoline models. Here are their main features:

— Pneumatic. Spray guns powered by compressed air from an external compressor. In other words, only a spray gun (gun, airbrush, etc.) is included in the delivery package of such a tool; it requires a separate compressor to operate. At first glance, this creates certain inconveniences; however, such a configuration also has noticeable advantages. Firstly, you do not need to overpay for a compressor if it is already “on the farm” (a separate example of such a situation is a construction site where a powerful stationary compressor is used for several pneumatic tools). Secondly, the nozzle and compressor can be selected at your discretion, without relying on the equipment selected by the manufacturer. Thus, most modern spray guns are made precisely pneumatic. The unambiguous disadvantages of such devices include unsuitability for working with airless spray systems, however, such systems are used much less often than air ones, so this nuance is not key.

— Electric. In this case, spray guns powered by outlets are meant (battery models are placed in a separate category,...see below). Devices of this type consist of the nebulizer itself, as well as a compressor (built-in or remote). One of the advantages of this option is just the presence of a compressor, due to which, for the operation of such an airbrush, in fact, only an outlet is needed. In addition, both air and airless spray systems can be used in such units. The disadvantages of electric models include a higher cost than pneumatic ones, as well as the inability to select a working nozzle and a compressor separately — usually, spray guns of this type are sold as ready-made kits.

— Rechargeable. Spray guns equipped with electric compressors powered by their own batteries. The key advantage of such tools is battery life, the ability to work even if there are no outlets nearby. On the other hand, it is difficult to achieve high power and performance with a battery; the time of continuous operation of such atomizers is limited by the battery charge (and a source of electricity will still be required to replenish the charge); and the design itself turns out to be more complicated and more expensive than that of analogues powered by a socket. Therefore, battery spray guns nowadays have not received much distribution.

— Mechanical. Units in which the supply of paint is carried out due to the muscular strength of the user — in other words, for this you need to manually swing the pump lever. This scheme of operation is as simple and reliable as possible, but it is poorly suited for traditional sprayers. Therefore, "mechanics" nowadays is extremely rare, mainly among rollers (see "View").

— Petrol. Models with this type of power supply combine high power and independence from the power grid, but they are rather bulky, more difficult to operate and repair, more expensive (both in terms of their own cost and fuel price) and are generally designed for industrial outdoor use. . Therefore, they are poorly distributed and are used where, for one reason or another, electrical analogues are not applicable.

Power consumption

The power consumed by the operation of an electric tool (see "Type").

Most modern spray guns, even performant ones, have a rather low power: for example, models with more than 1 kW are extremely rare, and in most cases, power consumption does not exceed 500 W at all. So when connecting such equipment to sockets, there are usually no problems; only single units of high performance, requiring 3.5 kW or more, have to be connected according to special rules (directly to the shield). In other cases, data on power consumption is most often not needed for normal use and may be required only for specific tasks — for example, to calculate the load on an autonomous generator.

Rated pressure

Nominal air pressure in the spray gun.

The general meaning of this parameter depends on the type of instrument (see above). So, in pneumatic models, nominal pressure data is required for connection to an external compressor. It is this pressure that this compressor must create at the inlet to the atomizer; too low values will lead to a decrease in efficiency, too high are fraught with breakdowns and even accidents with injury to others.

In turn, for electric models, the nominal pressure is the air pressure created by the unit's own compressor; the complete atomizer was originally designed for the same pressure. So in this case, this parameter is more of a reference than practically significant; it may be useful only for connecting replacement nozzles to the compressor (or vice versa, for using an existing nozzle with a third-party compressor).

As for specific pressure values, they are primarily determined by the spray system (see below). The diversity here is quite high: the most modest units give out less than 2 bar, 2-5 bar compressors are quite popular , 5-10 bar models are relatively rare, and some powerful performance solutions provide a pressure of 100 bar or more.

Air consumption

Nominal air flow rate when the spray gun is operating in normal mode.

This parameter is of key importance for a pneumatic tool (see "Type"): the compressor to which such a sprayer is connected must provide the appropriate air supply rate, otherwise normal operation will not be possible. In turn, in electric models, this indicator is more of a reference — the complete compressor, by definition, corresponds to the characteristics of the sprayer, and it makes sense to pay attention to the flow rate only if the working nozzle of the electric spray gun is planned to be used with a "non-native" compressor.

Paint consumption

Consumption of paint or other material (for example, mortar for plaster) when the spray gun is operating in normal mode.

The higher the flow rate, the more material the tool can apply per unit of time, the better it is suitable for processing large areas and for applying thick coatings. On the other hand, not all types of work require high productivity, and sometimes relatively low consumption is optimal. Detailed recommendations on this subject for different situations can be found in special sources.

Nozzle size

The diameter of the nozzle at the outlet of the spray gun.

It is from this nozzle that paint or other working material comes out. And the productivity and spot size at the exit depend on the diameter. Accordingly, larger nozzles are better suited for processing large surfaces, while smaller nozzles provide greater precision and accuracy. Thus, this parameter is directly related to the type of device (see above). There are also spray guns with a replaceable nozzle, when more than one nozzle is provided in the kit, which expands the possibilities of using the device.

Spray system

The type of spray system used in the device. Different spray systems differ in the format of work and, as a result, in individual practical nuances of use:

HP (High Pressure) / CONV (conventional). One of the most famous and popular spray systems. The air pressure at the inlet and outlet of such spray guns is approximately the same. The advantages of HP systems are the simplicity of design, large working width, high paint application speed and relatively low air consumption. At the same time, the percentage of paint transfer in such sprayers is very low — more than half of the applied material bounces off the surface due to high speed and settles on surrounding objects. Another disadvantage is that the flow from the HP atomizer picks up fine dust and other "flying debris" heavily; because of this, additional grinding and polishing of the painted surface is often required.

RP (Reduced Pressure). Modification of conventional (HP) atomizers, characterized by a slightly reduced outlet pressure. This allowed for some improvement in the transfer coefficient and reduced debris levels while maintaining the advantages of good performance, uniformity and low air consumption. Nevertheless, according to these indicators, such devices are still inferior to low-pressure models.

HVLP (High Volume Low Pressure). Spray system with reduced outlet pr...essure (approx. 0.7 bar) and large air volumes. One of the key advantages of such devices is a high ink transfer coefficient of at least 65%. In addition, the low speed of the paint supply reduces the level of debris: there are relatively few turbulences that “pull” debris along with them. The main disadvantage of HVLP systems can be called high air consumption; not every compressor can handle such an atomizer. In addition, they require additional filters to protect against oil and moisture entering the air during high compressor loads; and you can work with such a device only at a short distance (usually up to 15 cm), and in order to avoid drips, a certain skill is required.

— HVLP-II (New High Volume Low Pressure). The second generation of HVLP (see the relevant paragraph), which has a number of improvements compared to the original, but is generally similar.

— LVLP (Low Volume Low Pressure) / Trans-Tech. Spray systems developed as an improvement to HVLP. With the same advantages (high transfer coefficient, minimum debris), they consume much less air and have softer requirements for compressors and hoses. In addition, LVLP systems are less sensitive to pressure drops, and the effective spraying range in them reaches 25 – 30 cm. Of the notable disadvantages of this option, one can only mention a rather high cost.

— HVMP (High Volume Middle Pressure). Spray systems with high air flow and medium outlet pressure. Compared to HVLP, due to the higher pressure, they give a slightly lower ink transfer efficiency, but greater uniformity and range.

— LVMP (Low Volume Middle Pressure). Spray systems with low air consumption and medium pressure; a kind of modification of LVLP, characterized by higher pressure. Due to this, the cost is somewhat reduced, productivity, uniformity of application and capture width are increased; however, paint consumption is higher and the finished surface is rougher than original LVLP.

— HTE (High Transfer Efficiency). This marking is used in spray systems for which a high transfer coefficient is claimed by the manufacturers. In terms of characteristics, they are most often similar to LVLPs (see the relevant paragraph) — in particular, they have a rather large effective range. However, specific features in each case should be clarified separately.

— EA (Excellent Atomization). The main feature of such systems, in accordance with the name, is a very high degree of atomization of the material. Other performance characteristics in such systems may be different, these points should be clarified separately.

— HEA (High Efficiency Airless). Proprietary airless spray technology (see "Spray") used in the Wagner brand technique. Reduces paint wastage by more than 50% compared to more traditional systems, as well as more even material distribution, according to the creators. Suitable for water and oil based coatings.

MP (Middle Pressure). Transitional option between the HP and RP described above: it provides a slightly lower working pressure compared to HP, but not as low as in RP. For a number of reasons, it did not receive distribution.

HD (Heavy Duty). A marketing designation used on individual sprayers, typically high-capacity, high-volume sprayers. The specific characteristics of such systems should be clarified separately.

Container

The location of the paint reservoir relative to the regular working position of the spray gun. Note that there are models without a tank, and this indicator does not affect the quality of painting, the differences lie in other points:

Lower. The lower arrangement allows the use of fairly large containers, while maintaining the ability to work with one hand. In addition, many models allow you to put the gun directly on the tank.

Upper. The top position of the tank provides a fairly comfortable balance; and due to the fact that the paint enters the gun under its own weight, it becomes possible to work with more viscous materials than with the lower location. However the volume of the tank is usually less; the exception is plaster spray guns (see "View"), in which the tank is supplemented with a handle to hold the tool in two hands.

Lateral (swivel). At first glance, such models look like overhead spray guns; however, in them, the reservoir is not connected directly from above, but from the side, through an L-shaped tube. The attachment of this tube allows you to rotate the tank, so that the spray gun can be used with equal convenience for both vertical surfaces (such as walls) and horizontal surfaces (such as the ceiling).

Detached. Reservoirs locat...ed separately from the spray gun and connected to it by a hose for supplying paint. This option is considered optimal for large volumes of work. There are several reasons for this: firstly, the user has to hold only a relatively light pistol in his hands, which reduces fatigue; secondly, the tank can be made quite roomy — up to several liters. Among the shortcomings, one can note the general bulkiness and increased cost of such spray guns.

Container volume

The total volume of the paint reservoir supplied with the gun. Large tank, on the one hand, allows you to "charge" a lot of material and work for a long time. On the other hand, it increases the size and weight of the device; and a large amount of paint will also weigh accordingly (although for models with a separate tank location - see above - this is not critical). Therefore, the thinner and more delicate the work for which the spray gun is designed, the, as a rule, the smaller the tank volume : for example, in airbrushes (see "View") it rarely exceeds 50 ml, and in plaster models, in turn, can be measured liters. Therefore, most models have a volume of no more than a liter, namely 500 ml, 600 ml, 700 ml, 800 ml, 1000 ml.
Price graph
Bosch PFS 5000 E often compared