Support E-Katalog!Get a Premium subscription for just 49 ₴
Catalog   /   Large Appliances   /   Water Coolers

Comparison V.I.O. X601-FCB vs HotFrost V450ASM

Add to comparison
V.I.O. X601-FCB
HotFrost V450ASM
V.I.O. X601-FCBHotFrost V450ASM
Compare prices 19Compare prices 14
TOP sellers
Electronic control. Bottom loading butyl.
Installationfloorfloor
Water loadingbottombottom
Features
Water temperature
hot
cold
hot
cold
ambient
Cooling typecompressorcompressor
Cold water tank volume3.6 L3.6 L
Hot water tank volume1.1 L1 L
Cooling performance2 L/h2 L/h
Heating performance5 L/h5.5 L/h
Heating power500 W650 W
Cooling power112 W100 W
More specs
Water supply controlbuttonsbuttons
Water blocker
Lighting
Dimensions (WxDxH)35.5x39x111.5 cm31x34x103 cm
Weight14.3 kg15.7 kg
Color
Added to E-Catalogdecember 2019august 2019
Brief conclusions of the comparison water coolers

Price graph
HotFrost V450ASM often compared
Glossary

Water temperature

Varieties of water types that the device can produce. Most models have several options for different situations.

Hot. Water is heated to a high temperature — usually about 90 – 95 °C. This temperature is considered optimal for brewing most types of tea, and for instant drinks and other products (for example, instant soups), it is more than enough. However water from the cooler is not suitable for ground coffee — effective brewing of such a drink occurs at higher temperatures, about 100 °C. On the other hand, there are specialized household appliances for brewed coffee.

Cold. Water cooled to a temperature noticeably lower than room temperature — about 8 – 10 °C, and sometimes even lower. Such water can be useful for diluting other drinks (juices, tea, etc.) and lowering their temperature, as well as an independent drink in hot weather.

Ambient. In this case, it usually means the supply of water directly, without any cooling or heating. Thus, the temperature of the water at the outlet will be the same as in the bottle or water pipe. In addition to the fact that this option allows you to save energy, it often turns out to be convenient from a purely practical point of view — for example, it is more comfortable for many people to drink clean water not chilled, namely at room temperature, and for preparing some instant drinks, dil...uting medicines, etc. this is the best option. Note that some models may provide the ability of heating or cooling the incoming water to ambient temperature if its initial temperature is very different from this indicator.

Hot water tank volume

The volume of the hot water tank provided in the device.

This parameter describes the maximum amount of hot water that the cooler can produce in one run, without interruption or with minimal interruptions. When this amount is exhausted, you will have to wait until the water in the tank heats up again to a sufficient degree; the waiting time depends on the heating capacity (see below). At the same time, the volume of hot water tanks in modern devices is usually several litres, and it is extremely rare to drain this volume entirely — usually, small portions of 200-300 mL are required. Therefore, this tank plays the role of a buffer — when the user drains the next portion of water, water from a bottle or a water mains is added to the tank; such an admixture does not particularly affect the temperature in the tank, however, for an additional guarantee, the heating system immediately turns on. Thus, if the consumption does not exceed the heating capacity, the temperature of the contents remains practically unchanged.

Heating performance

The performance of the heating system installed in the device, in other words, is the amount of water that can be heated per hour. In coolers, it is usually indicated for water at room temperature — about 20 °C, in models with a connection to the water mains (see "Water loading") — for 15 °C (this is the average temperature of cold water). Accordingly, when deviating from these indicators, the actual performance may be slightly more or less (however, such deviations must be very significant for this to become noticeable).

This parameter determines two main points. First of all, it characterizes the maximum consumption of hot water that the device can handle and the recommended breaks between use. For example, if a user needs to fill 2 tea cups with a volume of 300 mL each, and the cooler specifications state a heating capacity of 3 L/h, this means that 600 g (0.6 L) of water that has entered the tank instead of poured out, the cooler will heat in 0.6/3 = 0.2 h, that is, about 12 minutes. However, the need for such calculations arises mainly with high water consumption, which is very close to the claimed performance.

Also, knowing the heating rate and the volume of the cold water tank (see above), you can determine how long it will take to heat the tank filled with water at room temperature (for example, if the cooler is started for the first time, or if the tank was completely drained before). So, if in the above example, the volume of the tank is 1 li...tre, then 1/3 hour will be spent on heating it, that is, about 20 minutes. However, you can use water earlier if maximum heating is not critical.

Heating power

It is the power consumed by the device in water heating mode. Usually, it is the operating power of the heating element.

This parameter is directly related to the heating performance (see above): a high heating rate inevitably requires appropriate power. Also, the power consumption of the device depends on this parameter. However, it is worth noting that after the end of heating, the device switches to the temperature maintenance mode and requires much less energy. In other words, the heater consumes the specified power not constantly but occasionally, as needed.

It is also worth mentioning that in models that work only for heating, this indicator also describes the maximum power consumption of the entire device. And, if there are two modes (heating and cooling), the total maximum power consumption corresponds to the sum of the powers of both modes.

Cooling power

It is the power consumed by the device in water cooling mode. In other words, this is the power required for the operation of all elements of the cooling system — a compressor or a converter with a fan (depending on the type of cooling, see above).

This parameter is directly related to the cooling performance (see above): a high cooling rate inevitably requires appropriate power. However, with the same power, compressor systems are more performant than electronic ones. Only models with coolers of the same type can be compared in terms of power.

Also note that the cooling system does not consume this power constantly, but only when necessary. So, at room temperature of the water in the "cold" tank, it turns on at full capacity, and when the desired temperature is reached, it switches to its maintenance mode, which requires much less energy.

In cooling-only models, this figure describes the maximum power consumption of the entire device. And, if there are two modes (heating and cooling), the total maximum power consumption corresponds to the sum of the powers of both modes.

Lighting

The presence of a lighting system in the design of the cooler.

It can perform both decorative and practical functions. So, in some models, the lighting plays the role of an indicator signalling the readiness of water and other parameters of the device. Also, this function can be useful in low light conditions, making both individual elements (taps, levers, etc.) and the entire device more visible, reducing the risk of bumping into it in the dark.