Print technology
The 3D printing technology used by the printer.
Nowadays, the most widely used technologies are
Fused Deposition Modeling (FDM/FFF),
LCD printing,
Plastic Inkjet Printing (PJP), Colour Inkjet Printing (CJP), Multi-Jet Modeling (MJM),
Digital Light Processing (DLP),
Stereolithography (SLA), and selective thermal sintering (SHS). Here is a more detailed description for each of them:
— Fused Deposition Modeling (FDM/FFF). The most common 3D printing technology so far. The principle of such printing is as follows: the working material (thermoplastic) in the form of a thread is fed into the extruder, where it melts due to heating and is printed through a special nozzle of small diameter. If necessary, lines within one layer are laid side by side, forming a continuous surface of the required area; for overhung elements, temporary supports made of the same plastic that are removed manually after the end of the process. The popularity of this type is primarily due to the low cost of both the printers and their consumables, which allows such printing to be used in almost all areas — from domestic use to industrial production. In addition, many types of thermoplastics can be used for FDM/FFF, as well as the wide variety of colours. The disadvantages of this technology include les
...s accuracy than that of “photopolymer” SLA and DLP, but this point is not critical in most cases.
Note that the common designation for this technology "FDM" is a trademark; to circumvent restrictions of use, individual manufacturers use the “FFF” label, which generally has the same meaning.
— LCD printing. A method of creating three-dimensional objects by applying layers of liquid resin and then hardening it using ultraviolet light. 3D printers with LCD technology use liquid crystal displays to control the printing process. The printing material for them is liquid resin, which hardens when irradiated with UV light. The printer's LCD display displays a flat section of the 3D model, light passes through the pixels on the screen and the liquid resin underneath hardens in accordance with this section. By repeating the procedure of applying and hardening layers, the printer gradually creates a three-dimensional object. LCD technology differs from other 3D printing methods and often provides higher speed. It allows you to create parts with good accuracy and detail, which makes it attractive for printing prototypes, concept models and functional parts. Another option for naming LCD technology is MSLA (Masked SLA LCD).
— Plastic Inkjet Printing (PJP). In fact, that is another name for the FDM technology described above, used by 3D Systems and some other manufacturers. There are no fundamental differences.
— Colour Inkjet Printing (CJP). A type of inkjet 3D printing that allows you to create multi-colour products; proprietary development of 3D Systems. The general principle of inkjet 3D printing is as follows: a thin (about 0.1 mm) layer of powder material is applied to the working platform, and then a liquid binder is applied to this material through the nozzle of the print head (as a similar process in an inkjet printer). Then the platform is lowered by the thickness of the layer and the cycle is repeated until the product is ready. Print heads with multiple nozzles and binders of different colours are used for colour inkjet printing, which allows you to create products of a wide variety of shades. This printing method is highly accurate both in terms of shapes and colours; it is used even in puppet animation. On the other hand, CJP printers are expensive, so their use is mostly limited to professional applications.
— Stereolithography (SLA). One of the types of 3D printing based on the use of photopolymer resins — liquid materials that solidify when exposed to light. The light source in this case is a laser, and printing is carried out as follows. There is a movable platform with the container filled with photopolymer. At the beginning of the process, the platform surface is at a depth of one layer (about 0.1 mm ± 0.05 mm). The laser traces the contours of this layer on the surface of the resin, causing the material to solidify; the platform is then lowers to the depth of another layer, and the process is repeated until the product is finished. (The platform can also move up, but the general scheme of work remains the same). The main advantage of SLA is the highest precision, which makes it possible to use this technology even in dentistry and jewelry. At the same time, the speed of such printing is quite high, and modern photopolymers are very diverse, in finished form they can imitate various materials (plastic, rubber, etc.). On the other hand, both the printers and their consumables are very expensive.
— Digital Light Processing (DLP). Another type of 3D printing using photopolymers. The principle of operation is similar to the SLA described above: the product is formed in layers from a special resin that solidifies under the light. The difference lies in the fact that instead of laser emitters, DLP printers use LED-based projectors. This made it possible to significantly reduce the cost of such equipment while keeping all the main advantages of photopolymer 3D printing — high accuracy, good speed and a variety of materials (in terms of colours and properties). The low spread of this technology is mainly due to the fact that it appeared relatively recently.
— Multi-Jet Modeling (MJM). 3D printing technology based on the use of a print head with numerous nozzles (tens or even hundreds). Print media may vary; in modern models, photopolymers are most often used (like so in SLA and DLP), as well as low-melting wax, although it is also possible to work with thermoplastics (as in FDM/FFF). Anyway, the materials are applied in layers; when working with photopolymers, each layer is fixed using UV light. It is possible to print simultaneously with several materials — this facilitates work with overhung elements and supports for them: wax can be used for supports, which is then easily melted out of the finished product. Generally, MJM printers have high accuracy (comparable to SLA) with less material consumption, while they are excellent for even fairly large parts. On the other hand, the cost of such devices and consumables for them (photopolymers) turns out to be quite high, besides, MJM printers are difficult to maintain and repair. Therefore, the main scope of their application is professional prototyping in industry.
— Selective Heat Sintering (SHS). A technology that is similar to the CJP described above. A special powder (thermoplastic or fusible metal) is used as a consumable. At the beginning of the process, the powder is applied with a roller to the working platform with the thickness of one layer; then the heat emitter processes the material along the given shapes, the platform is lowered down to the thickness of the next layer, and the cycle is repeated until the complete model is formed. In fact, SHS is a simplification of the SLS technology, where a laser was used for sintering: the use of a thermal head instead of a laser head made it possible to significantly simplify and reduce the cost of the printer design. Also note that for the overhung elements, it is not necessary to print additional supports — the unused powder plays the role of these supports. The disadvantages of SHS include the limited choice of materials: a thermal emitter is not as efficient as a laser one, which requires the use of fusible materials. Metal products printed on such a printer may require additional processing to give the desired durability and heat resistance.Compatible software
Software for building models which the printer is optimally compatible with. The software used for 3D printing includes both CAD (automatic design systems for creating models) and slicers (software that break a three-dimensional model into separate layers, preparing it for printing). Therefore, this paragraph often indicates a whole list of software products.
Note that the degree of optimization in this case may be different: some models are compatible only with the claimed programs, but many printers are able to work with third-party CAD systems. However, it is best to choose software directly claimed by the manufacturer: this will maximize the capabilities of the printer and minimize the chance of failures and “inconsistencies” during operation.
Object dimensions (HxWxD)
The maximum dimensions of a product that can be printed on a 3D printer in one cycle.
The larger the dimensions of the model, the wider the choice for the user, the greater the variety of sizes available for printing. On the other hand, "large-sized" printers take a lot of space, and this parameter significantly affects the cost of the device. In addition, while printing a large model with FDM/FFF (see "Printing Technology"), larger nozzles and higher print speeds are desirable — and these features negatively affect detailing and the print quality of tiny objects. Therefore, while choosing, you should not aim the utmost maximum sizes — you should realistically assess the dimensions of the objects that you're going to print, and proceed from these data (plus a small margin in case of unexpected moments). In addition, we note that a large product can be printed in parts, and then piece these parts together.
Object volume
The largest volume of an object that can be printed on a printer. This indicator directly depends on the maximum dimensions (see above) — usually, it corresponds to these dimensions multiplied by each other. For example, dimensions of 230x240x270 mm will correspond to a volume of 23*24*27 = 14,904 cm³, that is, 14.9 litres.
The exact meaning of this indicator depends on the printing technology used (see above). These data are fundamental for photopolymer technologies SLA and DLP, as well as for powder SHS: the volume of the model corresponds to the amount of photopolymer/powder that needs to be loaded into the printer to print the product to the maximum height. If the size is smaller, this amount may decrease proportionally (for example, printing a model at half the maximum height will require half the volume), however, some printers require a full load regardless of the size of the product. In turn, for FDM/FFF and other similar technologies, the volume of the model is more of a reference value: the actual material consumption there will depend on the configuration of the printed product.
As for specific figures, the volume
up to 5 litres can be considered as small,
from 5 to 10 litres — medium,
more than 10 litres — large.
LCD panel resolution
An important characteristic that determines the quality and detail of 3D printing on LCD displays (see “Printing technology”). The resolution of an LCD matrix indicates how fine details and layers can be created when printing objects. Essentially, this is the number of pixels that transmit light through a given matrix. The more pixels, the more detailed and small objects can be printed. The highest quality printing results are provided by models
with a high matrix resolution(from 6K and above).
Min layer thickness
The smallest thickness of a single layer of material that can be applied with a printer.
In photopolymer devices of SLA and DLP formats (see "Print Technology") the meaning of this parameter is simple: it is the smallest height of a one pass cycle of the working platform. The smaller this height, the better detailing can be achieved on the device; however, in such models, this height is usually small — most often
less than 50 µm. But in devices based on FDM/FFF and similar technologies using nozzles, there are also higher rates —
51 – 100 µm and even
more. Here it is worth noting the fact that a small minimum layer thickness allows efficient use of small nozzles and achieves better detail. On the other hand, increasing detailing reduces productivity, and to compensate this fact, it is necessary to increase the print speed by increasing power (both heating and blowing), which, in turn, affects the cost. Therefore, choosing one should proceed from real needs: for objects with relatively low detail, there is no need to look for a printer with a small layer thickness.
It is worth noting that in FDM/FFF printers, the optimal layer thickness depends on the nozzle diameter (see below) and the specifics of printing — for example, for a “in one line” perimeter without filling, you can use the minimum layer thickness, while for filling it is not recomme
...nded. Detailed recommendations on the optimal layer thickness for different situations can be found in special guides.Print speed
The printing speed provided by an LCD 3D printer (see “Printing technology”).
This parameter usually refers to the amount of material or layers that the printer can create in one hour. The higher the print speed (
70 – 80 mm/h,
over 80 mm/h), the faster the printer can complete the print of the object, but the speed can also affect the print quality. Higher speeds often result in less detailed and rougher printed objects, while lower speeds (
up to 60 mm/h,
60 – 70 mm/h) produce higher quality and more precise details. The choice of optimal speed depends on the specific requirements for the printed object and the desired quality of 3D printing.
LCD display
The printer has its own screen. The specific functionality of such a screen can be different - from the simplest indicator for several characters and service symbols to a full-fledged color matrix capable of displaying inscriptions, drawings, etc.; These nuances should be clarified separately. However, in any case, this feature provides additional ease of management: various service information can be displayed on the screen to help the user set up printing parameters and control the process.
We would like to emphasize that touch displays are not included in this category; they are indicated as a separate function. But the screen size directly affects the comfort when working with the device.
There are also models with a touch screen, similar to those used in smartphones and tablets. Such a display is a full-fledged control tool, and it is more convenient and functional than more traditional options such as keypads: you can display a wide variety of control elements (buttons, sliders, lists, etc.) on the screen, selecting the optimal set of these elements for your needs. specific situation. In addition, the screen itself usually has a color matrix with a fairly high resolution, which makes it possible to display a wide variety of service data - even drawings and diagrams. Thanks to all this, most printer control functions can be performed through such a display; some models with such equipment are able to work even without connecting to a computer. The disad...vantages of touch displays include their higher cost than conventional ones, despite the fact that control via a computer is usually still more practical and visual. So this function is relatively rare these days.
Power
Rated input power of the printer, in fact — the highest power consumed by the device in regular operation.
This indicator is directly related to the specs of the device, primarily the overall performance. However, generally, 3D printers are a relatively economical devices: among solutions that are not related to specialized industrial equipment, values of more than 1 kW are extremely rare, and even in the most performant models this figure does not exceed 3 kW. For such capacities, an ordinary household power outlet is quite enough, so you have to pay attention to power consumption mainly in specific cases — for example, when assessing the load on a voltage stabilizer or a backup power source.