Support E-Katalog!
Get a Premium subscription for the price of a cup of coffee
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   Hi-Fi Receivers

Comparison Yamaha R-S202D vs Sony STR-DH190

Add to comparison
Yamaha R-S202D
Sony STR-DH190
Yamaha R-S202DSony STR-DH190
Compare prices 6Compare prices 5
TOP sellers
Stereo receiver.
Typereceiverreceiver
Tech specs
Frequency range20 – 20000 Hz10 – 100000 Hz
Power per channel (8Ω)100 W100 W
Signal to noise ratio (RCA)100 dB96 dB
Signal to noise ratio (Phono)80 dB
Features
Audio formats supportMPEG 1 Layer II/MPEG 4 HE AAC v2 (AAC+)
Adjustments
bass control
treble adjustment
balance adjustment
 
Multimedia
Bluetooth
Bluetooth
Connectors
Inputs
 
mini-Jack (3.5 mm)
Phono
RCA4 pairs4 pairs
Outputs
Pre-Amp
Pre-Amp
On headphones6.35 mm (Jack)6.35 mm (Jack)
General
Sleep timer
Remote control
Power consumption175 W
Dimensions (WxDxH)435x322x141 mm430x284x133 mm
Weight6.7 kg6.7 kg
Color
Added to E-Catalogdecember 2022january 2018
Brief conclusions of the comparison hi-fi receivers

Price graph
Yamaha R-S202D often compared
Sony STR-DH190 often compared
Glossary

Frequency range

The range of audio frequencies that the audio receiver can handle. The wider this range, the more complete the overall picture of the sound, the less likely it is that too high or low frequencies will be “cut off” by the output amplifier. However, note that the range of sound audible to a person is on average from 16 Hz to 20 kHz; There are some deviations from this norm, but they are small. At the same time, modern Hi-Fi and Hi-End technology can have a much wider range — most often it is a kind of "side effect" of high-end circuits. Some manufacturers may use this property for promotional purposes, but it does not carry practical value in itself.

Note that even within the audible range it does not always make sense to chase the maximum coverage. It is worth, for example, to take into account that the actually audible sound cannot be better than the speakers are capable of giving out; therefore, for a speaker system with a lower threshold of, say, 70 Hz, there is no need to specifically look for a receiver with this figure of 16 Hz. Also, do not forget that a wide frequency range in itself does not absolutely guarantee high sound quality — it is associated with a huge number of other factors.

Signal to noise ratio (RCA)

Signal-to-noise ratio when operating the audio receiver through the RCA line input (see below).

Any signal-to-noise ratio describes the ratio of the level of pure sound produced by the device to the level of extraneous noise that occurs during its operation. This parameter is the main indicator of the overall sound quality — and very clear, because. its measurement takes into account almost all the noise that affects the sound in normal operating conditions. A level of up to 90 dB in modern receivers can be considered acceptable, 90 – 100 dB is not bad, and for advanced audiophile-class devices, a signal-to-noise ratio of 100 dB or more is considered mandatory.

Signal to noise ratio (Phono)

The signal-to-noise ratio when the audio receiver is connected to the Phono input. This input is for connecting turntables; see "Inputs" for more details. The value of this parameter is described in detail in the "Signal-to-noise ratio (RCA)" section.

Audio formats support

Audio file formats that the receiver is capable of working with. Among those, there may be lossy compressed (MP3, WMA, etc.), lossless compressed Lossless(FLAC, APE, etc.) and Uncompressed uncompressed formats (DSD, DXD, etc.).

In general, compression is used to reduce the volume of audio files. Lossy compression (the most common option) cuts off some of the audio frequencies (mainly those that are poorly perceived by the ear), making such files take up the least amount of space. Lossless compression preserves all original frequencies; this format is preferred by many lovers of high-quality sound, however, such files take up a lot of space, and the difference between normal compression and lossless compression becomes clearly noticeable only on high-quality equipment. Uncompressed formats, in turn, are intended primarily for professional audio work; their full reproduction requires Hi-End audio equipment, and the volumes of such materials are very large. However, these standards are quite popular among sophisticated audiophiles.

Separately, it is worth touching on the uncompressed DSD format. This standard and its direct derivatives DSF and DFF use coding using the so-called pulse density modulation. It is considered more advanced than traditional pulse-frequency modulation, and allows you to achieve more accurate sound, a higher signal-to-noi...se ratio and less interference with a relatively simple element base.

Adjustments

Bass adjustment. The presence in the audio receiver of a separate bass level control, in other words, bass volume. The ratio of low and high frequencies largely determines the overall picture of the sound; the optimal options for this ratio for different cases will be different, and they depend on a number of factors — from the type of audio being played to the personal tastes of the listener. Anyway, the bass control provides an additional opportunity to fine-tune the sound of the entire system. It is often combined with a treble control (see below); in fact, this combination is the simplest version of the equalizer.

Treble adjustment. The presence in the receiver of a separate volume control for high frequencies. The meaning of this function is completely similar to the bass control described above, only it works with a different frequency band.

Balance adjustment. The presence in the audio receiver of the balance between the channels. This setting is used in stereo sound: by changing the position of the knob, you can increase the volume for one channel and decrease it for another. Due to this, the conditional centre of the perceived sound shifts towards the speaker that sounds louder. This feature can be very useful for correcting the sound stage — for example, if the speakers have different sensitivity, badly placed, or the signal it...self is not properly balanced. At the same time, the balance controller introduces additional elements into the design, which increases the likelihood of interference. And therefore, in top-class models, it may not be provided at all.

— Loudness. The presence of a loudness system in the audio receiver. This function is used to further adjust the tone of the sound when the sound volume is low. Its necessity is connected with the fact that the human ear perceives a quiet sound differently than a loud one; because of this, even high-quality sound at low volume will seem “blurry”, not clear enough. Loudness corrects this by boosting certain frequencies. Usually this mode is enabled by the user at will.

Inputs

mini-Jack (3.5 mm). A standard connector widely used in modern audio equipment and other electronics, mostly portable. Technically, the mini-Jack input can be used for different types of signal, but in fact in audio receivers it most often plays the role of a line interface and is mainly used to connect the mentioned portable equipment — for example, audio players.

Amplifier input (Main). An input designed to connect an external source directly to the power amplifier (in fact, in By-pass / Direct mode, see "Communications"). In different models, the Main inputs may differ in the type of interface, most often either RCA (“tulip”) or XLR is used. The first option is extremely widespread in modern high-end audio equipment due to its low cost, simplicity and good connection quality, however, in terms of signal purity and resistance to interference (especially when working with long wires), it still loses to XLR. It is also worth noting that “tulip” connectors can also be used for the main line input — see “RCA” for details; do not confuse this input with Main (especially since they may differ in technical parameters — for example, input impedance).

Phono. Special input for connecting turntables; often has a suffix indicating the type of cartridge that is compatible, such as "Phono MM" or "Phono MM/MC". A...feature of "vinyl" is that the sound coming from the pickup must be passed through a phono stage. Actually, the presence of the Phono input just means that the receiver is equipped with a built-in phono stage and you can connect a “turntable” directly to it, without additional equipment.

— XLR (balanced). Audio line input using balanced connection via XLR — characteristic round 3-pin plug; one input consists of a pair of these connectors, for the left and right stereo channels. A feature of a balanced connection is that the XLR cable itself dampens external interference coming to it; and the connector provides tight contact and is often supplemented with a retainer for reliability. All this allows you to achieve high quality connections and maximum purity of sound, even when using long wires. However, such inputs are rare — this is due not so much to their shortcomings, but to the fact that audio receivers are rarely used as linear balanced audio receivers.

— Coaxial S/P-DIF. A kind of S/PDIF digital audio interface that uses an electrical coaxial cable with RCA connectors (“tulip”) for connection. Such a cable, unlike optical (see below), is subject to electromagnetic interference to a certain extent, but is more reliable and does not require special care in handling. And the connection bandwidth is enough to transmit multi-channel audio up to 7.1. Note that despite the identical connectors, the coaxial digital interface is not compatible with analogue RCA (see below); and even cables for S / P-DIF are recommended to use specialized ones.

— Optical. A variation of the S/PDIF digital audio interface that uses a TOSLINK fiber optic cable connection. In terms of bandwidth, it is completely similar to the coaxial interface (see above), but it compares favorably with its complete insensitivity to electromagnetic interference. On the other hand, due to their design, optical cables are sensitive to sharp bends and mechanical stress — for example, accidentally stepping on such a cable can damage it.

— Balanced digital (AES/EBU). An interface used primarily in professional audio equipment. It can use different types of connectors, but is most often implemented via XLR. For more information about this connector and the principle of balanced connection, see "XLR (balanced)", but do not confuse these two interfaces: AES / EBU works with a digital signal transmitted over a single cable, regardless of the number of channels.

— Composite (video). An input for connecting a composite video signal. Uses the same RCA connector as many audio inputs, but is most often highlighted in yellow. The signal is transmitted in analogue format, via a single cable, which simplifies the connection, but limits the bandwidth; because of this, this standard is not suitable for working with HD. Nevertheless, it is very popular in modern video technology, in addition, it is found even in outdated devices (like VHS VCRs). Note that composite audio inputs are not provided in modern audio receivers — their role is played by standard RCA line inputs (see below).

— BNC. Bayonet type connector used to connect coaxial cable. Theoretically, it can be used for various purposes, but in fact it is most often used similarly to coaxial S / P-DIF, for digital analogue audio. BNC connectors are more reliable in connection due to the bayonet lock; there is also a version with a threaded fixation.

— Trigger. Service input that allows the receiver to turn on and off at the same time as other components of the audio system. Such an input is connected to the trigger output of a control device (for example, an amplifier), and when this device is turned on and off, a control signal is sent to the receiver. This eliminates the need for the user to separately manage the power on of each device.

— Control input (IR). Connector for connecting an external infrared remote control receiver. Such a receiver can be useful in cases where the signal from the remote control does not reach the built-in IR sensor of the receiver. Note that other components of the system that are compatible with the remote control and have IR control outputs, for example, players or tuners, can play the role of an external sensor.

Sleep timer

A function designed to automatically turn off the audio receiver after a specified time. The name "sleep timer" can be interpreted in two ways. First, at the end of the countdown, the device is put into sleep mode; secondly, one of the most common ways to use this feature is to turn on relaxing music before going to bed and set a timer so that you can fall asleep calmly to the music and not be distracted by turning off the audio system. Of course, there are other ways to use the timer.

Remote control

A remote control is included with the audio receiver.

The purpose of this function and its convenience is obvious: you can give commands from the remote control from almost anywhere in the room, from where the signal “gets” to the device (and when installed in hard-to-reach places, for some models, you can use remote sensors, see “Inputs — Control Input ( IR) "). This is much more convenient than every time to approach the receiver itself. Thus, many manufacturers provide only the most basic control functions on their own receiver panel, while advanced functionality is implemented through the remote control.

Note that some models may be compatible with universal remote controls that do not have specialization for a specific model.

Power consumption

The power consumed by the audio receiver during normal operation. Note that this parameter can be indicated in different ways: for example, some manufacturers measure it when the amplifier is operating at full power, while others measure it at 80% or 50% power. In addition, the power consumption of modern receivers is usually not so high as to put a serious strain on the power supply systems. Therefore, power consumption information usually plays a supporting role.