Power phases
The number of processor power phases provided on the motherboard.
Very simplistically, phases can be described as electronic blocks of a special design, through which power is supplied to the processor. The task of such blocks is to optimize this power, in particular, to minimize power surges when the load on the processor changes. In general, the more phases, the lower the load on each of them, the more stable the power supply and the more durable the electronics of the board. And the more powerful the CPU and the more cores it has, the more phases it needs; this number increases even more if the processor is planned to be overclocked. For example, for a conventional quad-core chip, only four phases are often enough, and for an overclocked one, at least eight may be needed. It is because of this that powerful processors can have problems when used on inexpensive low-phase motherboards.
Detailed recommendations on choosing the number of phases for specific CPU series and models can be found in special sources (including the documentation for CPU itself). Here we note that with numerous phases on the motherboard (more than 8), some of them can be virtual. To do this, real electronic blocks are supplemented with doublers or even triplers, which, formally, increases the number of phases: for example, 12 claimed phases can represent 6 physical blocks with doublers. However, virtual phases are much inferior to real ones in terms of capabilities — in fact, t...hey are just additions that slightly improve the characteristics of real phases. So, let's say, in our example, it is more correct to speak not about twelve, but only about six (though improved) phases. These nuances must be specified when choosing a motherboard.
PCI-E 4x slots
Number of PCI-E (PCI-Express) 4x slots installed on the motherboard.
The PCI Express bus is used to connect various expansion cards — network and sound cards, video adapters, TV tuners and even SSD drives. The number in the name indicates the number of PCI-E lines (data transfer channels) supported by this slot; the more lines, the higher the throughput. 4 PCI-E lanes provide data transfer speeds of about 4 GB/s for PCI-E version 3.0 and 8 GB/s for version 4.0 (for more information about the versions, see "PCI Express Support").
The general rule for PCI-E is this: the card must be connected to a slot with the same or more lanes. Thus, boards for 1 or 4 PCI Express lanes can be installed in a standard PCI-E 4x slot. However, it is worth noting that in the design of modern "motherboards" there are slots of increased sizes — in particular, PCI-E 4x, corresponding in size to PCI-E 16x. The type of such slots in our catalog is indicated by the actual throughput, that is, the mentioned example will also be counted as PCI-E 4x. At the same time, peripherals with 16 PCI-E channels can also be physically connected to this connector — however, you should make sure that the throughput will be sufficient for the normal operation of such peripherals.
PCI-E 8x slots
The number of PCI-E 8x slots installed on the motherboard. This is an eight-lane version of the PCI-Express connection bus, with a minimum throughput of 16 Gbps one way (32 Gbps both). For more information about the PCI-Express standard, see "PCI-E 1x Slots".
PCI-E 16x slots
Number of PCI-E (PCI-Express) 16x slots installed on the motherboard.
The PCI Express bus is used to connect various expansion cards — network and sound cards, video adapters, TV tuners and even SSD drives. The number in the name indicates the number of PCI-E lines (data transfer channels) supported by this slot; the more lines, the higher the throughput. 16 lanes is the largest number found in modern PCI Express slots and cards (more is technically possible, but the connectors would be too bulky). Accordingly, these slots are the fastest: they have a data transfer rate of 16 GB / s for PCI-E 3.0 and 32 GB / s for version 4.0 (for more information about the versions, see "PCI Express Support").
Separately, we note that it is PCI-E 16x that is considered the optimal connector for connecting video cards. However, when choosing a motherboard with several such slots, it is worth considering the PCI-E modes supported by it (see below). In addition, we recall that the PCI Express interface allows you to connect boards with a smaller number of lines to connectors with numerous lines. Thus, PCI-E 16x will fit any PCI Express card.
It is also worth mentioning that in the design of modern "motherboards" there are slots of increased sizes — in particular, PCI-E 4x, corresponding in size to PCI-E 16x. However, the type of PCI-E slots in our catalog is indicated by the actual throughput; so only connectors that support 16x speed are considered as PCI-E 16x.
PCI Modes
Operating modes of PCI-E 16x slots supported by the motherboard.
For more information about this interface, see above, and information about the modes is indicated if there are several PCI-E 16x slots on the board. This data specifies at what speed these slots can operate when expansion cards are connected to them at the same time, how many lines each of them can use. The fact is that the total number of PCI-Express lanes on any motherboard is limited, and they are usually not enough for the simultaneous operation of all 16-channel slots at full capacity. Accordingly, when working simultaneously, the speed inevitably has to be limited: for example, recording 16x / 4x / 4x means that the motherboard has three 16-channel slots, but if three video cards are connected to them at once, then the second and third slots will be able to give speed only to PCI-E 4x level. Accordingly, for a different number of slots and the number of digits will be appropriate. There are also boards with several modes — for example, 16x/0x/4 and 8x/8x/4x (0x means that the slot becomes inoperable altogether).
You have to pay attention to this parameter mainly when installing several video cards at the same time: in some cases (for example, when using SLI technology), for correct operation of video adapters, they must be connected to slots at the same speed.
USB A 2.0
Number of USB 2.0 connectors provided on the motherboard.
USB connectors (of all versions) are used to connect USB ports located on the front panel of the case to the "motherboard". A special cable connects such a port to the connector, with one connector typically working with just one port. In other words, the number of connectors on the motherboard corresponds to the maximum number of front-facing USB ports that can be used with it.
Specifically, USB 2.0 is the oldest version widely used today. It provides a data transfer rate of up to 480 Mbps, is considered obsolete, and is gradually being replaced by more advanced standards, primarily USB 3.2 gen1 (formerly USB 3.0). Nevertheless, quite a bit of peripherals are still produced for the USB 2.0 interface, as its capabilities are quite sufficient for most devices that do not require high connection speeds.
USB A 5Gbps (3.2 gen1)
The number of
USB 3.2 gen1 connectors provided on the motherboard.
USB connectors (of all versions) are used to connect USB ports located on the external side of the case to the "motherboard" (usually on the front panel, less often on the top or side). Such a port is connected to the connector with a special cable, and usually, one connector works only with one port. In other words, the number of connectors on the motherboard corresponds to the maximum number of USB ports that can be used with it. It should be noted that in this case we are talking about traditional USB A ports; connectors for the newer USB C are mentioned separately in the specifications.
As for the specific version USB 3.2 gen1 (previously known as USB 3.1 gen1 and USB 3.0), it provides a data transfer speed of up to 4.8 Gb/s and higher power delivery than the earlier USB 2.0 standard. At the same time, USB Power Delivery technology, allowing for power delivery up to 100 W, is generally not supported by connectors of this version for USB A (although it may be implemented in connectors for USB C).
USB A 10Gbps (3.2 gen2)
Number of
USB 3.2 gen2 connectors provided on the motherboard.
USB connectors (of all versions) are used to connect USB ports located on the external side of the case (usually on the front panel, less often on the top or side) to the "motherboard". A special cable connects such a port to the connector, and one connector typically works with only one port. In other words, the number of connectors on the motherboard corresponds to the maximum number of case USB ports that can be used with it. Note that in this case, we are talking about traditional USB A ports; connectors for the newer USB C are mentioned separately in the specifications.
As for the specific version of USB 3.2 gen2 (formerly known as USB 3.1 gen2 and USB 3.1), it operates at speeds up to 10 Gbps. Moreover, such connectors may support USB Power Delivery technology, which allows providing up to 100 W of power output to a port; however, this function is not mandatory and its availability should be confirmed separately.
Wi-Fi