Укр|Eng|Рус
Ukraine
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Lenovo Ideapad 320S 15 [320S-15IKB 81BQ004CRA] vs Lenovo Ideapad 520S 14 [520S-14IKB 81BL009CRA]

Add to comparison
Lenovo Ideapad 320S 15 (320S-15IKB 81BQ004CRA)
Lenovo Ideapad 520S 14 (520S-14IKB 81BL009CRA)
Lenovo Ideapad 320S 15 [320S-15IKB 81BQ004CRA]Lenovo Ideapad 520S 14 [520S-14IKB 81BL009CRA]
from 16 149 ₴
Outdated Product
from 20 132 ₴
Outdated Product
User reviews
Typelaptoplaptop
Screen
Screen size15.6 "14 "
Screen typeIPSIPS
Surface treatmentanti-glareanti-glare
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Refresh rate60 Hz60 Hz
Brightness220 nt255 nt
Contrast1520 :1
CPU
SeriesCore i5Core i5
Model8250U8250U
Processor cores44
CPU speed1.6 GHz1.6 GHz
TurboBoost / TurboCore frequency3.4 GHz3.4 GHz
3DMark066125 score(s)6125 score(s)
Passmark CPU Mark7623 score(s)7659 score(s)
SuperPI 1M11.25 sec11.07 sec
RAM
RAM8 GB8 GB
Max. RAM8 GB8 GB
RAM typeDDR4DDR4
RAM speed2400 MHz2400 MHz
Slots11
Graphics card
Graphics card typededicateddedicated
Graphics card seriesNVIDIA GeForceNVIDIA GeForce
Graphics card model940MX940MX
Video memory2 GB2 GB
Memory typeGDDR5GDDR5
3DMark0612843 points12843 points
3DMark Vantage P8549 points8549 points
Storage
Drive typeSSD M.2SSD
Drive capacity256 GB256 GB
Connections
Connection ports
HDMI
HDMI
Card reader
 /SD/MMC/
 /SD/MMC/
USB 2.01 pc1 pc
USB 3.2 gen11 pc1 pc
USB C 3.2 gen11 pc1 pc
Alternate Mode
Multimedia
Webcam1280x720 (HD)1280x720 (HD)
Camera shutter
Speakers22
Brand acousticsHarmanHarman
Security
kensington / Noble lock
kensington / Noble lock
Keyboard
Backlightwhitewhite
Key designisland typeisland type
Num block
Input devicetouchpadtouchpad
Battery
Battery capacity4510 mAh
Battery capacity53 W*h53 W*h
Battery voltage11.4 V
Operating time9 h12 h
Powered by USB-C (Power Delivery)
Fast charge
General
Preinstalled OSDOSDOS
Materialaluminium / plasticaluminium / plastic
Dimensions (WxDxT)362.7x252x19.9 mm327.4x236.5x19.3 mm
Weight1.89 kg1.7 kg
Color
Added to E-Catalogfebruary 2018january 2018

Screen size

Diagonal size of laptop display.

The larger the screen, the more convenient the laptop for watching high-definition movies, modern games, working with large-format graphic materials, etc. Large screens are especially important for multimedia and gaming models. On the other hand, the diagonal of the display directly affects the size and cost of the entire device. So if portability is key, it makes sense to pay attention to relatively small solutions; especially since most modern laptops have video outputs like HDMI or DisplayPort and allow connection of large-format external monitors.

In light of all this, the actual maximum for laptops these days is 17"(17.3"); however larger devices (18") reappeared at the beginning of 2023. The standard option for general purpose laptops is 15"(15.6"), less often 16", a diagonal of 13"(13.3") or 14" is considered small by the standards of such And smaller screens can be found mainly in specific compact varieties of laptops — ultrabooks, 2 in 1, transformers, netbooks; among such devices there are solutions for 12 ", 11" and even 10" or less.

Brightness

The maximum brightness that a laptop screen can provide.

The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.

As for specific values, many modern laptops have a brightness of 250 – 300 nt and even lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least 300 – 350 nt. And in the most advanced models, this parameter can be 350 – 400 nt and even more.

Contrast

The contrast of the screen installed in the laptop.

Contrast is the largest difference in brightness between the lightest white and darkest black that can be achieved on a single screen. It is written as a fraction, for example, 560:1; while the larger the first number, the higher the contrast, the more advanced the screen is and the better the image quality can be achieved on it. This is especially noticeable with large differences in brightness within a single frame: with low contrast, individual details located in the darkest or brightest parts of the picture may be lost, increasing the contrast allows you to eliminate this phenomenon to a certain extent. The flip side of these benefits is an increase in cost.

Separately, we emphasize that in this case only static contrast is indicated — the difference provided within one frame in normal operation, at constant brightness and without the use of special technologies. For advertising purposes, some manufacturers may also provide data on the so-called dynamic contrast — it can be measured in very impressive numbers (seven-digit or more). However, you should focus primarily on static contrast — this is the basic characteristic of any display.

As for specific values, even in the most advanced screens, this indicator does not exceed 2000: 1. But in general, modern laptops have a rather low contrast ratio — it is assumed that for tasks that require more advanced image characteristics, it is more...reasonable to use an external screen (monitor or TV).

Passmark CPU Mark

The result shown by the laptop processor in the Passmark CPU Mark test.

Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).

SuperPI 1M

The result shown by the laptop processor in the SuperPI 1M test.

The essence of this test is to calculate the number "pi" to the millionth decimal place. The time spent on this calculation is the final result. Accordingly, the more powerful the processor, the smaller the result will be (this SuperPI 1M is fundamentally different from many other tests).

Drive type

The type of drive that is installed in the laptop.

Classic hard drives (HDD) in modern laptops are quite rare in their pure form. Instead, solid-state SSD modules are becoming more common, including in HDD+SSD and SSHD+SSD combinations. Also note that among such modules, M.2 SSDs are very common, which can also support NVMe and/or belong to the advanced Intel Optane series. Here are the main features of these options in various combinations (as well as other drive options that can be found in modern laptops):

— HDD. Traditional hard disk, not complemented by any other type of storage. HDDs are notable for their low cost per gigabyte of capacity, which allows you to create very capacious and at the same time quite inexpensive media. On the other hand, such storages are considered less perfect than SSDs: in particular, they are rather slow, and they also do not withstand shocks and shocks (the latter is especially true in light of the fact that laptops are originally portable devices). Therefore, this option is quite rare nowadays, mainly among low-cost configurations.

— SSD. Solid-state memory based on flash technology. In general, drives of this type are noticeably more expensive than HDDs of a similar volume, but they have...a number of advantages over them — first of all, this is a high speed of operation, as well as the ability to endure quite strong shocks and vibrations without any problems. However, we emphasize that in this case we are talking about SSDs of the original format that do not use the M.2 interface, do not belong to the Optane series and are not eMMC or UFS modules (see below for all these features). This is the simplest and most affordable type of flash memory — in particular, it usually uses a SATA interface connection, which does not allow you to realize the full potential of such memory. On the other hand, even “regular” SSD modules still work noticeably faster than HDDs, and they are noticeably cheaper than more advanced solutions.

— SSD M.2. SSD module using M.2 connector. For SSDs in general, see above; and the M.2 connector was specifically designed for advanced yet tiny internal components, including solid state drives. One of the features of such a connection is that it is most often carried out according to the PCI-E standard — this provides a high data transfer rate (up to 8 GB / s, potentially more) and allows you to use all the features of SSD drives. At the same time, there are M.2 modules that work on the older SATA interface — its speed does not exceed 600 MB / s, but such equipment is cheaper than modules with M.2 PCI-E. For details, see "M.2 drive interface" — it is this item that allows you to evaluate the specific capabilities of SSD M.2.

— SSD M.2 Optane. An M.2 SSD (see above) belonging to the Intel Optane series. The main feature of such modules is the use of 3D Xpoint technology — it differs significantly from NAND, on which most conventional SSD modules are built. In particular, 3D Xpoint allows you to access data at the level of individual cells and do without some additional operations, which speeds up work and reduces delays. In addition, such memory is much more durable. Its main drawback is a somewhat high cost. It is also worth noting that the superiority of Optane over more traditional SSD modules is most noticeable at the so-called low queue depth — that is, with a small load on the drive, when a small number of requests are received at the same time. However, most everyday tasks (working with documents, surfing the web, relatively undemanding games) are implemented in this mode, so this moment can be considered an advantage — especially since the superiority of Optane, although it decreases, does not disappear with increasing load.

— SSD M.2 NVMe. NVMe is a data transfer standard designed specifically for solid-state SSD memory. It uses the PCI-E bus and allows you to maximize the potential of such memory, significantly increasing the data exchange speed. This can be either the only drive on board or an addition to an HDD or SSHD. Initially, it was believed that NVMe makes sense to be used mainly on high-performance systems, in particular gaming. However, the development and cheaper technology has led to the fact that such drives are also found in simpler laptops.

— HDD+SSD. The presence in the laptop of two separate drives — HDD and a regular SSD (not M.2, not Optane). The advantages and disadvantages of these types of drives are described in detail above; and their combination in one system allows you to combine the advantages and partially compensate for the shortcomings. SSD in such cases usually has a noticeably smaller volume than HDD, and is used to store data for which high access speed is critical: the operating system, work programs, etc. In turn, it is convenient to store information on a hard disk that takes up a significant volume and at the same time does not require a special access speed; a classic example is multimedia files and documents. In addition, the solid state module can be used as a high-speed cache for a hard drive — similar to the SSHD described below. However, this usually requires special software settings, while the "two separate drives" mode is usually available by default.
It is also worth noting that modern laptops are increasingly using HDD bundles not with conventional SSDs, but with more advanced M.2 modules (including M.2 Optane). However, this option also continues to be used — mainly among relatively inexpensive configurations.

— SSHD. A combination drive that combines a hard disk drive (HDD) and a solid state drive (SSD). It differs from the HDD + SSD bundle described above in two ways. Firstly, both carriers are in the same case and are perceived by the system as a single unit. Secondly, the hard drive is mainly used directly for data storage, and SSD memory usually performs an auxiliary function — it works as a high-speed cache for the HDD. In fact, it looks like this: the data from the hard drive, which the user most often accesses, is copied to the SSD and, at the next access, is loaded from the solid state media, and not from the HDD. This allows you to significantly speed up the work compared to conventional hard drives. However in terms of speed, such “hybrids” are still inferior even to conventional SSDs, not to mention M.2 and Optane solutions — but they are much cheaper.

— HDD+SSD M.2. Combination of a classic hard drive with an M.2 solid-state SSD module. For more information about this combination, see "HDD + SSD": almost everything stated there is also relevant for this case, adjusted for the fact that M.2 SSDs are able to provide higher speeds (see also above — in p. " SSD M.2").

— HDD + Optane M.2. Combining a classic hard drive with an Intel Optane M.2 solid-state SSD module. This combination is generally similar to the “HDD + SSD” combination (see above), adjusted for the advanced capabilities of Optane drives (see also “SSD M.2 Optane” above).

— SSHD+SSD M.2. Combining an SSHD with an M.2 SSD. In general, it is similar to the “HDD + SSD M.2” combination (see above), adjusted for the fact that instead of a regular hard drive, a more advanced and high-speed hybrid drive is used (see also above about it). This further increases the cost, but improves performance.

— eMMC. A type of solid-state drive, originally used as built-in permanent memory for smartphones and tablets, but has recently been installed in laptops. It differs from SSD (see above), on the one hand, by lower cost and good energy efficiency, on the other hand, by lower speed and reliability. Thus, eMMC is now found mainly among transformers and laptop-tablets (see "Type") — for them, low power consumption is more important than maximum performance. Also note that such drives are usually made built-in and do not require replacement.

— HDD + eMMC. Combining a classic hard drive with an eMMC solid state module. The features of each type of drive are described in detail above, and their combination is used mainly in laptop-tablet devices (see "Type"). At the same time, the eMMC drive is installed at the top of the device and is designed to store the operating system and the most important data that needs constant access; and the HDD, located in the lower half, is used as additional storage for large amounts of information (for example, movie collections).

— SSD M.2 + eMMC. The combination of two solid-state modules in one laptop — SSD M.2 and eMMC. See above for details on the features of both types of memory, and their combination is a rather exotic option. It is mainly used to increase the total amount of solid-state memory without a significant increase in cost (remember, eMMC is cheaper than an M.2 SSD of the same volume). In addition, while the eMMC module is usually made built-in, the M.2 SSD is removable by definition, and can be replaced with another drive if necessary.

— UFS. Another type of solid-state memory, originally designed for smartphones and tablets — along with the eMMC described above. It differs from the latter both in high efficiency and increased cost. Thus, such drives are extremely rare among laptops: where eMMC capabilities are not enough, manufacturers usually use full-fledged SSDs.

Battery capacity

The capacity of the included laptop battery in milliamp-hours (mAh).

Higher capacity allows the laptop to work longer on a charge, all other things being equal. However, keep in mind that the actual battery life will depend not only on the battery, but also on the power consumption of the laptop itself — and it is determined by both the hardware platform and the installed software. Therefore, only models with similar characteristics can be compared with each other according to this indicator. And if you need a “long-playing” laptop or laptop with very good battery life, you should choose it not by battery capacity, but by directly stated operating time.

Regarding milliamp hours, it is also worth noting that this is not a very reliable (although the most popular) unit of capacity: the actual amount of energy stored in a battery depends not only on milliamp hours, but also on the operating voltage. A more correct unit in this sense is watt-hours, for details on them, see p. "Battery capacity" below. As for specific numbers, the most modest models in this regard are equipped with batteries of 3000 – 4000 mAh and even less. 4000 – 5000 mAh can be called an average, 5000 – 6000 mAh is above average, and the most capacious laptop batteries can h...old 6000 -7000 mAh or more.

Battery voltage

Rated voltage of the battery supplied with the laptop.

In fact, most users do not need to pay special attention to this parameter. The battery is selected by the manufacturer in such a way as to ensure the battery life and power efficiency planned for this model, so when choosing, it makes sense to look at more "close to life" indicators — first of all, the maximum operating time. Voltage data is needed mainly in specific cases — for example, when looking for a spare battery or transferring capacity from one unit to another (for more details, see "Battery Capacity").

Operating time

Maximum laptop operating time on a single battery charge, without recharging. In this case, usually, the operating time in the maximum energy saving mode is implied: disabled wireless modules, minimum screen brightness, a small load on the processor, etc. Accordingly, the time of actual work on a charge is usually noticeably less than this indicator. Nevertheless, it can be used both for a general assessment of the battery life of a laptop, and for comparing it with other models. And choose work laptop ( from 7 operation hours) or with more powerful battery (from 11 operation hours).
Lenovo Ideapad 320S 15 often compared
Lenovo Ideapad 520S 14 often compared