Укр|Eng|Рус
Ukraine
Catalog   /   Computing   /   Components   /   Computer Cooling

Comparison computer Cooling

Save List
Add to comparison
Deepcool XFAN 120
Deepcool XFAN 120
Compare prices 27
User reviews
TOP sellers
Main specs
Featuresfor case
Product typefan
Fan
Number of fans1
Fan size120 mm
Fan thickness25 mm
Bearinghydrodynamic
Max. RPM1300 rpm
Speed controlleris absent
Max. air flow45 CFM
Noise level26 dB
General
Power source3-pin
Mount typebolts
Dimensions120x120x25 mm
Weight180 g
Added to E-Catalogjune 2012

Features

The component of a computer system for which the cooling system is designed.

Nowadays, two types of Cooling system are most widely used — for CPU and for the case. Other solutions are also being produced — for video cards, RAM, hard drives, etc.; however, in most cases, such computer components either do not require special cooling systems at all (hard drives are a typical example), or are equipped with them initially (video cards).

COs for CPUs most often have the format of an active cooler or a water cooling system (see "Type"). In this case, in both cases, the design usually provides for a substrate — a contact plate adjacent directly to the processor. Heat from the substrate is transferred to the cooling unit using heat pipes (in coolers) or a circuit with a circulating coolant (in liquid systems). Heatsinks are also produced for CPUs — they are designed mainly for low-power CPUs with low heat dissipation; when installing such a component, special attention should be paid to the quality of the cooling of the case.

In turn, COs for cases are made exclusively in the form of fans, since their task is not to cool a strictly defined component, but to remove hot air from the entire volume of the system unit.

Product type

Fan. Classic fan — a motor with blades that provides air flow; it also includes multi-fan kits. Anyway, you should not confuse such devices with coolers (see below) — fans do not have heatsinks. Almost all solutions of this type are designed for enclosures (see "Intended use"), only a few models are designed for "blowing" hard drives or chipsets.

Radiator. Thermally conductive material construction with a special ribbed shape. This shape provides a large area of contact with air, as a result — good heat transfer. Radiators do not consume energy and operate absolutely silently, but they are not very efficient. Therefore, they are extremely rare in their pure form, and such models are intended either for low-power PC components with low heat dissipation (energy-efficient processors, hard drives, etc.), or for assembling an active cooler (see below) from a separately purchased fan and radiator (this option is found among solutions for video cards).

Active cooler. A device in the form of a radiator with a fan installed on it; however, in many models, the heatsink does not directly contact the cooled component, but is connected to it using heat pipes, while air is blown sideways (the so-called tower layout, especially popular in systems for the CPU; for more details, see "Blowing the air flow") . Anyway, such designs are, on the one hand, relati...vely simple and inexpensive, and, on the other hand, quite effective, which makes them an extremely popular type of Cooling system. In particular, it is in this format that most solutions for CPUs are produced (see "Intended use"), and in general coolers can be used for almost any component of the system, except for the case.

Water cooling. Water cooling systems consist of three main parts: a water block in direct contact with the cooled component (usually a processor), an external cooler, and a pump (separate or built into the cooler). These components are connected by hoses through which water (or other similar coolant) circulates — it provides heat transfer. And the cooling block is usually a cooler — a system of fans and heatsinks that dissipates heat energy into the surrounding air. Water systems are noticeably more efficient than active coolers (see above), they are suitable even for very powerful and "hot" CPUs, which traditional coolers can hardly cope with. On the other hand, this type of cooling is quite bulky and difficult to install, and it is not cheap.

— A set of LSS. Kit for self-assembly of liquid (water) cooling system. The difference between such solutions and conventional water cooling (see above) lies in the fact that in this case the entire system is supplied as a set of parts, from which the user must assemble the finished coolant himself (whereas in traditional water systems, the matter is usually limited to connecting hoses and filling coolant). Such a format significantly expands the user's options in terms of installation: you can independently choose individual layout nuances, replace some regular parts, supplement the design with third-party elements, etc. On the other hand, the installation itself turns out to be much more complex than traditional water systems. Therefore, very few LSS kits are produced, and they are designed mainly for enthusiast modders who like to experiment with the design and construction of their PCs.

— backplate. A solid metal plate used as a fastener for the cooling system. Serves to prevent the motherboard or video card from bending when deploying a heat dissipation system, and also provides passive cooling for the rear side of those modules with which it is adjacent.

- Water block VRM. A water block that provides efficient cooling of the elements of the VRM (Voltage Regulator Module) CPU power subsystem.

- CPU waterblock. Heat exchanger made of copper or nickel, designed to remove heat from the CPU through the coolant. Used in computer water cooling systems. Most often, processor water blocks are supplied with mounts for certain processor platforms.

- GPU water block. Liquid cooling blocks for the most efficient heat removal from the video card. Similar solutions are produced for a specific group of video cards on a single GPU. GPU water blocks consist of two main parts: the upper one, where a copper alloy heat sink is located, a plastic overlay with liquid channels and a casing to stiffen the structure, as well as a metal plate at the bottom of the block on the reverse side of the printed circuit board.

— A set of fasteners. A set of fasteners for mounting cooling systems on computer motherboard elements. Issued for specific socket versions.

Number of fans

The number of fans in the design of the cooling system. More fans provide higher efficiency (all else being equal); on the other hand, the dimensions and the noise generated during operation also increase accordingly. Also, note that other things being equal, a smaller number of large fans is considered more advanced than numerous small ones; see "Fan diameter" for details.

Fan size

The diameter of the fan(s) used in the cooling system.

In general, larger fans are considered more advanced than smaller ones: they allow you to create a powerful air flow at a relatively low speed and low noise level. On the other hand, a large diameter means large dimensions, weight and price. As for specific figures, 40 mm and 60 mm models are considered miniature, 80 mm and 92 mm are medium, 120 mm and 135 / 140 mm are large, and even 200 mm fans are found in the most powerful case systems.

Fan thickness

This parameter must be considered in the context of whether the fan will fit into the computer case. Standard case fans are available in the order of 25 mm in thickness. Low-profile coolers with a thickness of about 15 mm are designed for small-sized cases, where saving space is extremely important. Fans of large thickness (30-40 mm) boast high cooling efficiency due to the increased impeller dimensions. However, they are noisier than standard models at the same speed and do not always fit into the case normally, sometimes touching other components.

Bearing

The type of bearing used in the cooling fan(s).

The bearing is the piece between the rotating axle of the fan and the fixed base that supports the axle and reduces friction. The following types of bearings are found in modern fans:

Sliding. The action of these bearings is based on direct contact between two solid surfaces, carefully polished to reduce friction. Such devices are simple, reliable and durable, but their efficiency is rather low — rolling, and even more so the hydrodynamic and magnetic principle of operation (see below), provide much less friction.

Rolling. They are also called "ball bearings", since the "intermediaries" between the axis of rotation and the fixed base are balls (less often — cylindrical rollers) fixed in a special ring. When the axis rotates, such balls roll between it and the base, due to which the friction force is very low — noticeably lower than in plain bearings. On the other hand, the design turns out to be more expensive and complex, and in terms of reliability it is somewhat inferior to both the same plain bearings and more advanced hydrodynamic devices (see below). Therefore, although rolling bearings are quite widespread nowadays, however, in general, they are much less common than the mentioned varieties.

Hydrodynamic. Bearings of this type are filled with a special liquid; wh...en rotated, it creates a layer on which the moving part of the bearing slides. In this way, direct contact between hard surfaces is avoided and friction is significantly reduced compared to previous types. Also, these bearings are quiet and very reliable. Of their shortcomings, a relatively high cost can be noted, but in fact this moment often turns out to be invisible against the background of the price of the entire system. Therefore, this option is extremely popular nowadays, it can be found in cooling systems of all levels — from low-cost to advanced.

Magnetic centering. Bearings based on the principle of magnetic levitation: the rotating axis is "suspended" in a magnetic field. Thus, it is possible (as in hydrodynamic ones) to avoid contact between solid surfaces and further reduce friction. Considered the most advanced type of bearings, they are reliable and quiet, but expensive.

Max. RPM

The highest speed at which the cooling system fan is capable of operating; for models without a speed controller (see below), this item indicates the nominal rotation speed. In the "slowest" modern fans, the maximum speed does not exceed 1000 rpm, in the "fastest" it can be up to 2500 rpm and even more.

Note that this parameter is closely related to the fan diameter (see above): the smaller the diameter, the higher the speed must be to achieve the desired airflow values. In this case, the rotation speed directly affects the level of noise and vibration. Therefore, it is believed that the required volume of air is best provided by large and relatively "slow" fans; and it makes sense to use "fast" small models where compactness is crucial. If we compare the speed of models of the same size, then higher speeds have a positive effect on performance, but increase not only the noise level, but also the price and power consumption.

Speed controller

Auto (PWM). A type of automatic regulator used in processor cooling systems. The principle of this adjustment is that the automation monitors the current load on the CPU and adjusts the fan operation mode to it. Thus, the cooling system works "in advance": it actually prevents the temperature rise, and does not eliminate it (unlike the thermostat described below). The disadvantages of such automation are the high cost and additional compatibility requirements: the PWM function must be supported by the motherboard, and the fan must be powered through a 4-pin connector (see "Power").

— Manual. Manual regulator that allows you to set the rotation speed at the request of the user. Its main advantages are both the possibility of arbitrary adjustment and reliability: automation does not always respond optimally, and in performant systems it is sometimes better for the user to take control into his own hands. On the other hand, manual control is more expensive and also more difficult to use — it requires the user to pay more attention to the state of the system, and if not attentive, the likelihood of overheating increases significantly.

— Manual / auto. A combination of the two systems described above: the main control is carried out by PWM, and the manual regulator serves to limit the maximum rotational speed. A fairly convenient and advanced option that expands the possibilities of auto-adjustment and at the same time...does not require constant temperature control, as with a purely manual setting. However such functionality is expensive.

— Adapter (resistor). In this case, the speed is adjusted by reducing the voltage supplied to the fan. To do this, it is connected to the power supply through a resistor adapter. This is a kind of alternative to manual adjustment: adapters are inexpensive. On the other hand, they are much less convenient: the only way to change the rotation speed with such an adjustment is to actually change the adapter, and for this you have to turn off the system and climb into the case.

— Thermostat. Automatic speed control according to data from a sensor that measures the temperature of the cooled component: when the temperature rises, the intensity of work also increases, and vice versa. Such systems are simpler than the PWMs described above, moreover, they can be used for almost any system component, not only for CPU. On the other hand, they have more inertia and reaction time: if the PWM prevents heating in advance, then the thermostat is triggered by an increase in temperature that has already happened.

Max. air flow

The maximum airflow that a cooling fan can create; measured in CFM — cubic feet per minute.

The higher the CFM number, the more efficient the fan. On the other hand, high performance requires either a large diameter (which affects the size and cost) or high speed (which increases the noise and vibration levels). Therefore, when choosing, it makes sense not to chase the maximum air flow, but to use special formulas that allow you to calculate the required number of CFM depending on the type and power of the cooled component and other parameters. Such formulas can be found in special sources. As for specific numbers, in the most modest systems, the performance does not exceed 30 CFM, and in the most powerful systems it can be up to 80 CFM and even more.

It is also worth considering that the actual value of the air flow at the highest speed is usually lower than the claimed maximum; see Static Pressure for details.
Price graph
Deepcool XFAN 120 often compared