Suitable for
— Motorcycle. Batteries designed for use on motor vehicles. They have small dimensions, which is due, on the one hand, to the relatively small amount of space for their placement and stricter weight requirements than for cars, and on the other hand, to lower loads when starting motorcycle engines, a smaller number of on-board electronics and, accordingly, softer requirements for capacity and a number of other characteristics.
Motorcycle batteries are also made as resistant as possible to shaking and overturning. They can have a voltage of 6 V or 12 V.
—
Car. Batteries designed for use in cars and light trucks. They are of medium dimensions and have a standard voltage of 12 V, but the capacity can vary significantly; for more details, see "Battery capacity"
— Truck (bus). Batteries designed for use in buses, heavy trucks, tractors, combines and other vehicles of a similar weight category. They have a large capacity (usually at least 100 Ah, for more details see "Battery capacity"), since this class of transport has rather "gluttonous" on-board electronics, and starting the engine is associated with heavy loads and requires significant energy consumption. The voltage in this class can reach 24 V, but today such models have practically gone out of use, and most
truck batteries produce traditional 12 V.
—
Water transport.... Batteries designed for use on water transport — mainly boats and heavy motorboats. They are distinguished primarily by increased protection against moisture, as well as other negative effects associated with being on water transport — in particular, strong vibrations that can throw off the terminal or damage the battery, as well as tilts (to the point that some models standardly allow installation "on the side", at an angle of 90 °). The terminals themselves, in fact, are often made in a special "boat" format (see below), although there are also options with more traditional contacts.Electrolyte type
Among car batteries there are
lead-acid (SLA), advanced
lead-acid (EFB),
absorbent glass mat (AGM),
gel (GEL),
lithium-ion (Li-Ion) and
LFP (LiFePO4).
More about them:
— SLA (lead-acid). In a broad sense, the vast majority of modern car batteries are lead-acid, since their design is based on a combination of electrodes made of lead compounds and an electrolyte, the role of which is played by sulfuric acid diluted with water. Specifically, in this case, we mean the classic type of batteries that use a regular liquid electrolyte. Their widespread use is due to the simplicity of the design and low cost in combination with good capacity and starting current indicators (see below), as well as resistance to low temperatures (compared to other types of batteries).
— EFB (lead-acid). An improved subtype of lead-acid batteries with a longer service life, a high degree of safety and a virtually maintenance-free design. The abbreviation EFB stands for Enhanced Flooded Battery, which means "Improved battery with liquid electrolyte". A distinctive feature of EFB technology is thick plates made of pure lead without any impurities. The positive plates in the battery design are wrapped in special "bags" made of microfiber, which absorbs and holds the
...liquid electrolyte. As a result, intensive shedding of the active substance is prevented and the sulfation process during deep discharge of the battery is significantly slowed down. And due to the homogeneous structure of the electrolyte (mixed during natural movement of the car), the overall service life of EFB lead-acid batteries is increased and the charging speed is increased.
— AGM (absorbent glass mat). A type of lead-acid batteries, also known by the abbreviation AGM. The main design feature is described by the name itself: in such batteries, the space between the plates is filled not with liquid, but with glass cloth — microporous plastic, which is impregnated with the electrolyte itself (an aqueous solution of sulfuric acid). This design has a number of advantages over the classic one: for example, AGM batteries do not require maintenance (see "Maintenance") and practically do not emit gases during charging (the resulting oxygen and hydrogen recombine inside the battery itself), are resistant to shaking and are well suited for start-stop systems (see "Start-stop support"). Their disadvantages are high sensitivity to increased voltage during charging, the need for a special charger (regular ones are not suitable), and also the high cost.
— GEL (gel). One of the subtypes of lead-acid batteries, in which the electrolyte is not liquid, but thickened to a gel-like state. This design provides a number of advantages compared to the classic version (see above): a greater number of charge-discharge cycles (and therefore a longer service life); minimum leakage of electrolyte and associated gases; no need for maintenance (see "Maintenance"); resistance to deep discharges and temperature fluctuations, etc. On the other hand, GEL batteries are noticeably more expensive.
— Li-Ion (lithium-ion). Lithium-ion technology was originally used in batteries for portable gadgets such as mobile phones, but such batteries are becoming more and more widely used. The first type of transport to use Li-Ion technology were motorcycles. The advantages of such batteries over more traditional varieties include smaller dimensions and weight, the ability to produce high starting currents and charge with high currents (the latter significantly reduces the charging time), as well as a large number of charge-discharge cycles and a long shelf life. In addition, Li-Ion batteries contain a minimum of harmful substances, do not use acids or heavy metals, and some models are positioned as completely harmless to the environment. The main disadvantage of lithium-ion batteries is their very “biting” price.
— LiFePO4 (LFP). Such batteries are actually a modification of lithium-ion batteries (see the corresponding section), developed to eliminate some of the shortcomings of the original technology. They are notable, first of all, for their high reliability and safety: the probability of a battery “explosion” during overload is reduced to almost zero, and in general, LiFePO4 cope with high peak loads without problems. In addition, they are quite resistant to cold and maintain the operating voltage almost until the very discharge. The main disadvantage of this type is a slightly lower capacity.Terminals
Battery terminal design. First of all, compatibility with a particular car model depends on this parameter - different automakers use different battery connection systems. Note that some types of terminals can work with "non-native" wires; however, such a connection has a number of "pitfalls", and therefore it should be used only in extreme cases and only after familiarizing yourself with all the technical nuances.
-
Cone (Euro). Contacts in the form of truncated cones that do not have any of their own clips - the role of fasteners when connecting such a battery is played by clamps on the corresponding wires of the on-board electrical network. The cones are usually recessed into the battery cover. They have a standard size: for the upper part of the positive contact it is 19.5 mm, for the negative contact it is 17.9 mm. Euro terminals are used in cars of domestic and European manufacturers.
-
Thin cone (JAP). JAP is short for Japan. Accordingly, batteries with such terminals are used mainly in cars from manufacturers from Japan and other Asian countries (therefore, the term Asia is also used for such terminals). Their design is largely similar to the Euro described above, however, the JAP cones protrude above the lid and have a smaller size - 12.7 mm and 11.1 mm for "+" and "-" respectively. Due to this, such batteries are also physically compatible with most cars under Euro, becau
...se. clamps on wires are often made adjustable; in addition, the simplest adapters are also produced, which are put on the "Asian" terminals and increase their size to the "European" ones. But you can’t put a “eurobattery” on a car with JAP without replacing the mounts or using rather complicated adapters.
— Screw (USA). Unlike cones, these terminals are themselves clamps based, as the name suggests, on the use of screws. The wires under them are equipped with special contact plates (in the shape of a ring or the letter U), which are put on threaded pins; in extreme cases, you can do without such plates at all, clamping the stripped and bent ends of the wires in the mount. Such contacts are used mainly in cars of American manufacturers.
- Under the bolt (moto). Terminals designed to use contacts in the form of bolts: such a bolt, connected to a wire, is threaded into the terminal hole and fixed with a nut. Such a mount can be used in batteries for various purposes (see above), however, in this case, in accordance with the name, only "motorcycle" varieties of such terminals are meant, installed in the corresponding battery models.
- Under the bolt (boat). Bolted terminals, similar in principle to those described above for motorcycles, but used in water transport and batteries for such transport (see "Intended use").
- Petal. They have the shape of a "petal" and are represented by a quick-release connection according to the "father and mother" principle. Such connectors are good because there is no need to additionally clamp and fix the contact with a bolt / nut. As a rule, on the battery itself there is a male plug - an ordinary plate that looks like a petal. The spade-type terminal is easy to put on and take off, while providing a fairly reliable contact. Batteries with spade terminals are highly reliable and durable.Polarity
In this case, polarity refers to the location of the terminals on the battery. Traditionally, it is named according to the location of the "+" terminal when looking at the battery from the front (or, in the case of side terminals, from the side closest to which they are located).
—
+ left. In relation to passenger cars, such polarity in the CIS countries is often called "direct" or "ours". At the same time, in trucks (see "Purpose") the situation is the opposite - the left "plus" is the European standard.
—
+ right. In passenger cars, the right "plus" is typical mainly for European models, for which this polarity in the CIS countries received the unofficial name "euro" or "reverse" (as opposed to the domestic "direct"). In batteries for trucks, everything is the other way around.
— + right/ + left. This marking means that this battery model is available with both right and left “plus” (see above), and you can choose the option depending on the car model.
Note that the above division into “direct” and “reverse” polarity is not absolute, and in any case, before purchasing a battery in your car, this parameter should be clarified separately.
Battery capacity
The electrical capacity of a battery, in other words, the amount of energy stored by a battery when fully charged. The capacity value is expressed in amp-hours and indicates the number of hours during which a fully charged battery will be discharged to the minimum allowable charge, delivering a current of 1 ampere to the load. For example, a capacity of 40 Ah means that the battery is capable of delivering a current of 1 A for 40 hours, or 2 A for 20 hours, etc. In fact, a more capacious battery gives more attempts to start the engine, and is also able to work longer at a low load (for example, when powering a car audio system).
The capacity requirements for different transport types differ markedly. So, in motorcycle batteries, it rarely exceeds 20 Ah, the average value for passenger cars is 40-80 Ah (but there are options for 100 Ah or more), and for heavy equipment like buses, an acceptable capacity starts somewhere from 100 Ah. The optimal value of the battery capacity is often indicated by the manufacturer in the characteristics of the vehicle, and when choosing a model by capacity, you should focus primarily on these figures.
Starting power (EN)
The starting power of the battery, measured according to the EN standard (the unified standard of the European Union). According to this standard, the starting power is the maximum power that the battery can deliver for 30 seconds at an electrolyte temperature of -18 °C without the voltage dropping below a certain level (for standard 12 V batteries - not lower than 7.2 V). The term "starting" appeared because this operating mode is similar to starting an engine, when the battery has to deliver a high-power power to the starter for a short time.
The recommended starting power value is generally related to the weight category of the vehicle: the heavier it is, the more powerful the power usually needed to start it. And many manufacturers directly indicate the recommended values in the characteristics of a particular vehicle model. If the battery is purchased as a replacement, the general rule is: its starting power should be no less than that of its predecessor.
Note that in practice, starting power designations may be encountered according to 3 more standards: SAE (USA), DIN (Germany) and TU (GOST 959-91). The first is almost identical to EN, and DIN and TU are quite easy to translate into EN and vice versa: they are similar to each other, and each of them gives a number approximately 1.7 times smaller than NE. That is, for example, to replace a 200 A battery according to TU, you should look for a model with a power of at least 340 A (200 * 1.7) according to EN.
Carrying handle
Due to the use of lead plates, modern car batteries, even the smallest ones, are quite heavy. A special
handle on the top of the battery makes it much easier to carry. Usually it is made folding.