Dark mode
Укр|Eng|Рус
Ukraine
Catalog   /   Computing   /   Components   /   PSUs

Comparison Chieftec ECO GPE-500S vs Deepcool Nova DN500

Add to comparison
Chieftec ECO GPE-500S
Deepcool Nova DN500
Chieftec ECO GPE-500SDeepcool Nova DN500
Compare prices 35Compare prices 4
User reviews
TOP sellers
Main
High power and efficiency. Quiet fan.
Certificate 80+. Stable voltage under heavy loads. Low ripple.
Power500 W500 W
Form factorATXATX
Specs
PFCactiveactive
Efficiency85 %85 %
Cooling system1 fan1 fan
Fan size120 mm120 mm
Fan bearingsliding
Certificationwithout 80+80+
ATX12V version2.32.31
Power connectors
MB/CPU power supply24+4 pin24+8 (4+4) pin
SATA45
MOLEX23
PCI-E 8pin (6+2)11
Cable systemnon-modularnon-modular
Cable length
MB450 mm450 mm
CPU500 mm500 mm
SATA350 mm350 mm
MOLEX350 mm350 mm
PCI-E400 mm450 mm
Max. power
+3.3V21 A18 A
+5V20 A17 A
+12V137.5 A38 A
-12V0.3 A0.3 A
+5Vsb2.5 A2.5 A
+12V450 W456 W
+3.3V +5V103 W110 W
-12V3.6 W3.6 W
+5Vsb12.5 W12.5 W
General
Over voltage protection (OVP)
Over power protection (OPP)
Short circuit protection (SCP)
ProtectionSIP, UVP
Manufacturer's warranty2 years5 years
Dimensions (HxWxD)86x150x140 mm86x150x140 mm
Added to E-Catalogjuly 2016september 2014

Fan bearing

The bearing is the piece between the rotating axle of the fan and the fixed base that supports the axle and reduces friction. The following types of bearings are found in modern fans:

— Sliding. The action of these bearings is based on direct contact between two solid surfaces, carefully polished to reduce friction. Such devices are simple, reliable and durable, but their efficiency is quite low — rolling, and even more so the hydrodynamic and magnetic principle of operation, provide much less friction.

— Rolling. They are also called "ball bearings", since the "mediators" between the axis of rotation and the fixed base are balls (less often — cylindrical rollers) fixed in a special ring. When the axis rotates, such balls roll between it and the base, due to which the friction force is very low — noticeably lower than in plain bearings. On the other hand, the design turns out to be more expensive and complex, and in terms of reliability it is somewhat inferior to both the same plain bearings and more advanced hydrodynamic devices. Therefore, although rolling bearings are quite widespread nowadays, however, in general, they are much less common than the mentioned varieties.

— Hydrodynamic. Bearings of this type are filled with a special liquid; when rotated, it creates a layer on which the moving part of the bearing slides. In this way, direct contact between hard surfaces is avoided and friction is significantly reduced compared to previous...types. Also, these bearings are quiet and very reliable. Of their shortcomings, a relatively high cost can be noted, but in fact this moment often turns out to be invisible against the background of the price of the entire system. Therefore, this option is extremely popular nowadays, it can be found in cooling systems of all levels — from low-cost to advanced.

— Magnetic centering. Bearings based on the principle of magnetic levitation: the rotating axis is "suspended" in a magnetic field. Thus, it is possible (as in hydrodynamic ones) to avoid contact between solid surfaces and further reduce friction. Considered the most advanced type of bearings, they are reliable and quiet, but expensive.

Certification

The presence or absence of an 80+ certificate for the power supply. This certificate indicates high energy efficiency: to obtain it, the efficiency (see above) must be at least 80%, and in different modes (20%, 50% and 100% of the maximum load). There are several degrees of 80+:

80+. The original version of the certificate, assuming an efficiency of at least 82% (at least 85% for 50% load).

80+ White. The second name of the original 80+ certificate (see above).

80+ Bronze — efficiency not less than 85% (for half load — 88%).

80+ Silver — respectively 87% (90% for half load).

80+ Gold — 89% (92% for half load)

80+ Platinum — 90% (94% for half load).

80+ Titanium — 94% (96% for half load).

The power factor (see "PFC Type") must be at least 0.9 for the lower levels and at least 0.95 for the Platinum level. Also note that for redundant power used in server systems, the efficiency requirements are somewhat lower.

ATX12V version

A standard for power supplies that supplements the ATX specifications regarding power supply along the 12 V line. Introduced into use since the time of the Intel Pentium 4 processor. In the first series of the standard, the +5 V line was mainly used; from version 2.0, the +12 V line was introduced to fully power the components computer. Also in the second generation, a 24-pin power connector appeared, used in most modern motherboards.

MB/CPU power supply

The number and type of connectors provided in the PSU to power the motherboard or processor.

This parameter is written as the sum of several numbers, for example, "24+4". The first number in such an entry means the number of contacts in the connector for powering the motherboard; in the vast majority of cases, this is just 24, since modern motherboards use a 24-pin connector as standard. The second number describes the socket for powering the processor; most entry-level and mid-range CPUs use 4-pin power, but powerful chips may require 8-pin power. There can be several 4- or 8-pin connectors — based on powerful high consumption processors.

A separate case is the blocks of the "24 (20 + 4)" format. They have two separate plugs — 20 pin and 4 pin, which allows you to power both 24-pin motherboards and older 20-pin motherboards from such power supplies. At the same time, such models do not provide a separate power supply for CPU — it is powered only through the socket, and the 4-pin plug cannot be connected to any other components except the motherboard.

Now on the market there are PSUs with such power supply for the motherboard: 24 pin (20+4), 24+4 pin, 24+8(4+4) pin, 24+8+8(4+4) pin.

SATA

The number of SATA power connectors provided in the PSU.

Nowadays, SATA is the standard interface for connecting internal hard drives, and it is also found in other types of drives (SSD, SSHD, etc.). Such an interface consists of a data connector connected to the motherboard, and a power connector connected to the PSU. Accordingly, in this paragraph we are talking about the number of SATA power plugs provided in the PSU. This number corresponds to the number of SATA drives that can be simultaneously powered from this model.

MOLEX

The number of Molex (IDE) connectors provided in the design of the power supply.

Initially, such a connector was intended to power peripherals for the IDE interface, primarily hard drives. And although the IDE itself is completely obsolete today and is not used in new components, however, the Molex power connector continues to be installed in power supplies, and almost without fail. Almost any modern PSU has at least 1 – 2 of these connectors, and in high-end models this number can be 7 or more. This situation is due to the fact that Molex IDE is a fairly universal standard, and with the help of the simplest adapters, components with a different power interface can be powered from it. For example, there are Molex - SATA adapters for drives, Molex - 6 pin for video cards, etc.

+3.3V

The maximum values of current and power that the PSU can provide on individual power lines.

The power line can be simply described as a pair of contacts for connecting a particular load; one of these contacts is “ground” (with zero voltage), and the second has a certain voltage with a plus or minus sign, this voltage corresponds to the voltage of the power line. In this paragraph, it is + 3.3V (such power is present in 20- and 24-pin connectors for motherboards, in SATA power connectors and some other types of connectors).

In general, power and currents are rather specific parameters that the average user rarely needs — mainly when connecting high-power components such as video cards, as well as when starting a PSU without a computer to power other electronics (for example, amateur radio stations). It is also worth mentioning that the sum of the maximum powers on all lines can be higher than the total output power of the PSU — this means that all lines cannot operate at full power at the same time. Accordingly, when the PSU is fully loaded, some of them will produce less power than the maximum possible.

+5V

The maximum current that the PSU is capable of issuing + 5V to the power line. For more information about power lines in general, see "+3.3V". Also note here that + 5V power, in addition to connectors for motherboards (for 20 and 24 pins), is also found in Molex and SATA plugs, as well as some other specific types of connectors.

+12V1

The maximum current that the PSU is capable of delivering to the first power line is + 12V.

For more information about power lines in general, see "+3.3V". Here it is worth mentioning that 12 V is the most popular voltage among computer power connectors. It is used in almost all such connectors (with a few exceptions), and some plugs (for example, additional PCI-E power for 6 or 8 connectors) use only 12-volt lines — and in the + 12V format. And the division of + 12V power into several separate lines is used for safety purposes — in order to reduce the current flowing through each individual wire, and thus prevent excessive load and overheating of the wiring. However, some manufacturers do not specify the maximum current for individual + 12V lines and give only a general value in the characteristics; in such cases, this number is indicated in this paragraph.
Price graph
Chieftec ECO often compared
Deepcool Nova often compared