Principle of operation
A method used by a metal detector to find items. Describes both the general scheme of the signal and how it is processed.
—
VLF. Abbreviation for "very low frequency". As the name implies, these metal detectors operate at relatively low electromagnetic frequencies (less than 20 kHz). They use the “transmitter-receiver” operation scheme: one winding transmits the search signal, the other receives it. The transmitting and receiving windings are located in the same plane, in a concentric pattern or DD (see Coil Type). This technology allows you to create relatively inexpensive devices with good ground balance, minimal sensitivity to false alarms and a high degree of accuracy in metal recognition. Of the shortcomings, it is worth noting the rather high cost of production (coils require precision tuning), as well as the relatively small working depth of such metal detectors.
—
VFLEX. A variation of the VLF technology described above, developed by Minelab. The key principles of operation in such metal detectors are the same, however, the control unit in them receives not an analogue, but a digital signal. This has a positive effect on the quality of its processing, but significantly increases the price of the devices themselves.
—
R.F. This principle involves the use of high frequencies and the presence of two coils — a receiver and a transmit
...ter — separated by a certain distance (usually several tens of centimeters) and located perpendicular to one another. Such a scheme provides a greater depth of detection, but does not allow you to search for small objects and determine the type of metal. Therefore, it is mainly used in "deep" metal detectors.
— P.I. Abbreviation for "pulse induction" — "pulse induction". In such devices, one coil is provided, "mono" (see "Type of coil"), which plays the role of both a receiver and a transmitter. The coil emits signals in separate pulses, and in between them it works as a receiver, "listening" to the response signal from the ground. Such a scheme allows you to effectively search for objects even in an environment unfavorable for electromagnetic pulses — in particular, highly mineralized soils and in salt water. The latter makes PI instruments extremely useful for marine archeology, both underwater and on wet, salty sand beaches. On the other hand, qualitative discrimination in such models is not available.
— OR. A method based on the so-called breakdown of resonance. The coil in such metal detectors is part of an oscillatory circuit, to which a signal is supplied from the generator with a frequency close to the resonant frequency of the circuit. When a metal object enters the field created by the coil, the characteristics of its inductance and, accordingly, the resonant frequency of the entire circuit change. Based on the change in resonance characteristics, the control unit determines not only the presence of metallic objects, but also, to some extent, their composition. OR-devices are simple in design and inexpensive, since they do not require precision settings; at the same time, the depth of detection and the reliability of operation in them are low, and mineralized or wet soil further worsen the performance. Therefore, this method has not received wide popularity; it is used mainly in entry-level devices.
— ZVT. Minelab's proprietary technology, developed primarily for searching for gold treasures and nuggets. The abbreviation stands for "zero voltage transmission", the principle of operation is described as "the creation of ultra-constant high-power magnetic fields of opposite polarity." Due to this, according to the manufacturer, the efficiency and depth of gold detection are significantly increased, as well as the resistance to interference is improved and it becomes possible to work even on soils with very high levels of mineralization. However, ZVT-metal detectors are quite expensive, and the possibility of working with other metals, except for gold, is usually not mentioned in the description of such devices.Type
The design of the coil(s) of the metal detector.
— Concentric. The name of this type is due to the fact that such a coil includes two separate windings — receiving and transmitting — one of which is located inside the other. It is used in metal detectors that use the principles of VLF and VLFEX (see above). The field from a concentric coil has a small width, which determined both its advantages and disadvantages: on the one hand, due to this, it is possible to determine the location of an individual find with high accuracy, on the other hand, it takes a lot of time and effort to carefully examine vast areas. This shortcoming can be partly compensated for by the elliptical shape (see below). Also note that concentric models are quite sensitive to mineralized soils.
— Mono. The simplest type of coil, having only one winding. This option is used in
PI,
OR and RF devices, and in the latter case, two mono-coils must be installed. The main advantages and disadvantages of this type are similar to those described above concentric.
— D.D. Also known as Double-D. Such coils have a pair of windings in the form of the letters D, turned in different directions and arranged closely so that they form a circle or an ellipse. In terms of application, DDs are similar to the concentric coils described above, but they differ in the shape of the generated field: it is a narrow plane directed al
...ong the line of contact of the windings. This makes it possible to cover a fairly wide band in one pass, and also reduces the sensitivity to interference from mineralized soils. Among the shortcomings, compared with concentric ones, it is worth noting the high cost and lower accuracy in the localization of individual finds (however, the latter can be compensated by the skills and experience of the operator).
— Super-D. Coils of a specific design, consisting of three windings — a central one, which plays the role of a transmitter, and two external ones, working for reception. They were developed specifically for ZVT metal detectors (see "The principle of operation"), taking into account the features of their work.Dimensions (WxD)
The size of the standard coil (frame) of the metal detector. Theoretically, the larger it is, the deeper the device is able to “see” and the more space it captures in one pass, but the worse it is suitable for searching for small objects and the lower the accuracy with which it localizes them. At the same time, these characteristics depend on so many other factors that in fact, the size of the coil itself affects them very little.
Note that for coils (frames) of an elliptical shape, only one size can be indicated — along the length.
Detection frequency
The operating frequency (or frequency range) of the metal detector. This is one of the most important parameters when choosing a device, because the optimal frequency for different cases will be different — depending on the size and material of the items being searched, the characteristics of the soil and other factors. Detailed recommendations on the choice of frequency for each specific situation can be found in special sources; And already on the basis of this information, it is worth choosing a specific model.
Note that the actual frequency at which the metal detector will operate also depends on the installed coil — they are usually made for a specific frequency. Therefore, to use the full capabilities of the device with the ability to adjust this parameter, you may need replaceable coils.
Max. detection depth
The greatest depth at which a metal detector is guaranteed to be able to detect a metal object. Note that this parameter is most often quite approximate, moreover, somewhat conditional. This is due to the fact that it is usually indicated for an perfect environment (low-mineralized soil, a fairly large object, the material of which optimally matches the frequency of detection of the coil, etc.), and even for such conditions it is difficult to derive an absolutely accurate value. Therefore, in fact, the detection depth is highly dependent on a number of additional factors (from soil characteristics to user skills) and can be significantly less than indicated in the characteristics. Nevertheless, the claimed depth describes the capabilities of the metal detector quite well, and it is quite possible to compare different models with each other.
Note that a large depth not only increases the cost of the device, but can also adversely affect its ability to detect small objects.
Coin detection depth
The deepest depth at which a metal detector is capable of detecting small coins and other objects of similar size. Many users buy a device with the intention of “hunting” for metal trifles, so manufacturers often indicate this parameter separately in the specifications. Due to the small size of the coins, their detection depth is usually much less than the total maximum detection depth (see above).
Discriminator
The presence in the design of the metal detector of a special module for recognizing detected objects — a discriminator.
The discriminator allows you to determine the size and material of objects to which the metal detector reacts with a fairly high degree of accuracy. This feature is used primarily to filter triggers: for example, the device can be configured to not react to iron objects and aluminium pull tabs from cans with drinks, but to give an alarm when copper, silver or gold is detected. And in some models, it is possible to inform the user about the specific characteristics of the item found; this can eliminate the need to once again dig into the ground.
Ground balance
Ground balancing method provided in the design of the metal detector. By itself, such balancing is a setting of work parameters for the characteristics of a particular soil — after all, depending on its mineralization, humidity, etc. The soil affects the search signal in different ways, and the device electronics must take this effect into account for high-quality processing of such a signal. Due to the correct balancing, the detection of the desired objects is ensured and at the same time the probability of false positives is minimized; and it can be done in the following ways:
—
Automatic. The most convenient type of balancing that does not require the user to manually adjust the device. Usually, tuning requires some time to move the coil up and down above the ground until the automation sets the necessary parameters. There are two types of auto tuning: preset and tracking. The first option involves balancing the metal detector for a specific type of soil before starting work, after which the device uses the same parameters until the next setting. Such a scheme is inexpensive and can be used even in fairly simple models, but it is not very reliable: even a small change in the type of soil under the coil leads to a decrease in the effective detection depth and an increase in the probability of false positives. Follow-up balancing does not have this disadvantage: devices with this function constantly monitor the characteristics o
...f the soil and make the necessary corrections to the operating parameters right in the process of operation. This increases the efficiency of the search, however, the price of such devices is very high.
— Manual. As the name implies, with such balancing, the necessary parameters must be set by the user himself. This option is considered the most reliable, because. even the most advanced automatic systems do not always work perfectly; And yes, this setup is cheap. On the other hand, it requires certain skills from the operator and may not be suitable for inexperienced users.
— Manual / automatic. A variant that combines both types of balancing described above; in such models, the user can choose the way of setting as they wish.Functions
—
Pin-Point mode(target designation). Possibility of operating the device in the so-called static mode, when the detection accuracy increases significantly (due to a decrease in range and discrimination ability). Note that this function is not found in pinpointers (see “Type”), despite the similarity of names - such devices are very accurate and without special modes. And among classic mine detectors, the Pin-Point mode is used only in models operating on the VLF or VFLEX principle (see above) - for other operating principles this function is, for one reason or another, irrelevant. Be that as it may, this feature can be very useful in accurately searching for small objects. The fact is that a classic VLF/VFLEX metal detector is able to “see” objects only if the coil moves above the ground - this simplifies discrimination, but noticeably reduces accuracy. In static mode, the device operates even in a stationary position, and the coil can be moved very slowly, which significantly increases the search accuracy.
—
Setting sensitivity. Ability to change the sensitivity of the metal detector. High sensitivity makes it possible to search at great depths, but at the same time reduces resistance to interference, increases the likelihood of false positives and does not allow you to accurately determine the location of individual finds in places where signals are densely located (the device reacts to a
...group of objects as a whole and cannot identify separate). Yes, and ground balancing (see above) is also connected. and with sensitivity. Therefore, this parameter is very important for setting up the metal detector for a specific situation.
— Threshold tone. The threshold tone is a low, monochromatic hum that the metal detector’s speaker or headphones emit in “neutral” mode, when there are no alarms. This feature has several uses. So, the tone can serve as an indicator that the device is turned on and working normally; This is especially true for models not equipped with displays. The pitch of the sound may change when the characteristics of the surface under the coil change - for example, when moving to soil with a different level of mineralization, or when detecting objects that “do not reach” the response threshold due to their small size or deep location; experienced users know how to use these tone changes for work purposes.
— Detuning from electrical interference. The presence of this function in the metal detector allows you to neutralize the influence of electromagnetic interference and prevent both “blurring” of the signal and false alarms. Such interference can occur for various reasons: from the proximity of power lines, radio transmitters or locators, when working near vehicles with running engines or near other metal detectors, etc.
— Tone identification. This function assumes that the metal detector, when triggered, emits signals of different heights - depending on the expected material and size of the find, its depth, etc. This feature is especially important for models that do not have a display. Tone identification requires some getting used to, but usually even inexperienced users do not have problems with it.
— VDI / Target ID identification. Metal detector function that helps to more accurately determine the type of metal. It is based on the display on the display of a numerical value inherent in a certain class of metal. Thanks to the table, you can significantly narrow the range of possible detected objects.
— Determination of target depth. A device function that helps determine the depth of the desired target. It is based on displaying on the display the numerical value of certain units of length measurement or highlighting segments of the depth scale.
— Vibration response. The presence of a vibration response system in the design of the metal detector. This system allows the device to send a signal by vibration of the case (similar to how this happens, for example, in mobile phones). In some cases, such a signal may be more convenient and appropriate than sound or visual indication. For example, when using a ground metal detector, the vibration of the device in your hand will almost unmistakably indicate that it has triggered, while the sound may be “lost” in the surrounding noise, and the visual indicator may be out of sight at the right moment. And in an inspection pinpointer (see “Type”), the vibration response can also be useful as a “silent warning” - so that the signal is not audible to the subject being inspected and at the same time reliably warns the operator.
— Volume adjustment. The presence in the design of a regulator that allows you to change the volume of the sound signal from speakers or headphones. Such a regulator can be located on the control unit, on the handle, on the headphones, etc.; however, in all cases its operating principle and purpose are the same.
— Low battery indicator. The metal detector has an alarm system that warns of low battery levels. This function informs you in advance about the need to take care of a fresh power source and prevents situations where the battery unexpectedly “dies” at the most inopportune moment. Note that the specific implementation of the indicator may vary: the signal can be visual or audio, and in some models, data on the battery status is displayed only upon the user’s command.