Support E-Katalog!Get a Premium subscription for the price of a cup of coffee
Catalog   /   Office & Stationery   /   Printing & Polygraphy   /   3D Printers

Comparison XYZprinting da Vinci 1.0 Pro vs XYZprinting da Vinci 1.1 Plus

Add to comparison
XYZprinting da Vinci 1.0 Pro
XYZprinting da Vinci 1.1 Plus
XYZprinting da Vinci 1.0 ProXYZprinting da Vinci 1.1 Plus
from 31 046 ₴
Outdated Product
from 27 479 ₴
Outdated Product
Built-in video camera. Wi-Fi module. Closed body.
Print technologydeposition modeling (FDM/FFF)deposition modeling (FDM/FFF)
Filament material
ABS
PLA
ABS
PLA
3D model file format.stl, .3w.stl, .3w
Compatible softwareXYZware ProXYZWare
Object dimensions (HxWxD)200x200x200 mm200x200x200 mm
Object volume8 L8 L
Printing process
KinematicsBed Slinger (Core XZ)
Min layer thickness100 µm100 µm
Print speed150 mm/s150 mm/s
Nozzle diameter0.4 mm0.4 mm
Min thread diameter1.75 mm1.75 mm
Heating bed temperature90 °C
Extruder (nozzle) temperature240 °C
Number of extruders11
More features
Features
heated bed
closed chamber
heated bed
closed chamber
Data transfer
Wi-Fi
PC connection (USB)
USB
Wi-Fi
PC connection (USB)
PC connection (LAN)
General
LCD display
2.6"
+
touch screen
Dimensions47x51x56 cm47x51x56 cm
Weight26 kg27 kg
Added to E-Catalogfebruary 2017august 2015
Brief conclusions of the comparison 3d printers

Price graph
XYZprinting da Vinci 1.0 Pro often compared
Glossary

Compatible software

Software for building models which the printer is optimally compatible with. The software used for 3D printing includes both CAD (automatic design systems for creating models) and slicers (software that break a three-dimensional model into separate layers, preparing it for printing). Therefore, this paragraph often indicates a whole list of software products.

Note that the degree of optimization in this case may be different: some models are compatible only with the claimed programs, but many printers are able to work with third-party CAD systems. However, it is best to choose software directly claimed by the manufacturer: this will maximize the capabilities of the printer and minimize the chance of failures and “inconsistencies” during operation.

Kinematics

Kinematics in 3D printers is a way of organizing the movement of the print head and bed along the X, Y, and Z axes. The chosen kinematics affect the speed, accuracy, and reliability of the printing process. The most common types are:

— Bed Slinger (Core XZ). This design type features a bed that moves forward and backward (Y-axis), while the head with the nozzle moves left-right and up-down simultaneously (X and Z axes). In this system, vertical movement (height) is done not by raising the entire bed, as in some other printers, but by the head itself. This simplifies the device, making it lighter and cheaper, as well as allowing for printing tall parts with good stability.

— Core XY. An advanced design where the print head moves horizontally: left-right (X-axis) and forward-backward (Y-axis), while the bed moves up and down (Z-axis). Unlike traditional schemes, here the head movement is ensured by two belts that work in harmony, allowing it to move quickly and smoothly. The motors remain stationary and do not travel with the head, so the moving part is light and doesn't vibrate during operation. This results in high printing speed, accuracy, and neat layers, especially on large models. Simply put, CoreXY is smart mechanics for those who want fast, quiet, and high-quality printing.

— Delta. A unique and spectacular design where the print head is suspended on three vertical columns with moving carriages. These carriages move up and down, and thanks...to their coordinated work, the head moves in all directions: left-right (X-axis), forward-backward (Y-axis), and up-down (Z-axis). This system allows for very smooth and fast movements, especially suitable for tall models and complex curves. Delta printers are fast and quiet but require precise calibration and settings.

Heating bed temperature

Maximum heating temperature in 3D printers with heated bed (for more details, see the relevant paragraph). The higher the limit, the more varieties of plastic can be used for printing. So, models with heating up to 100 °C are suitable for 3D printing with PLA plastic, with a bed temperature of 100 to 120 °C — for working with ABS plastic and nylon, high-temperature ones — allow the use of polycarbonate and refractory varieties of plastic.

Extruder (nozzle) temperature

The heating temperature provided by the extruder in an FDM/FFF or PJP printer (see Printing Technology) .

Compatibility with this or that printed material directly depends on this parameter. For example, for PLA plastic, temperature range 180 – 230 °C is required, for ABS it will require 220 – 250 °C, and for polycarbonate — at least 270 °C. The temperature definitely should not be too low — otherwise the material simply cannot melt normally. But the margin in most cases is quite acceptable — for example, many PLA-compatible models operate at temperatures of about 250 °C, or even 280 °C.

Thus, a higher operating temperature enhances the printer's capabilities and its compatibility with various types of thermoplastics. On the other hand, the more the material is heated, the worse it cools down; to ensure sufficient solidification efficiency, one must either reduce the printing speed (which increases the time required) or increase the blowing intensity (which affects the cost). Well, anyway, while choosing, you should focus primarily on filaments, which compatibility is directly indicated in the specs.

Data transfer

Data transfer methods provided in the 3D printer design. We are talking primarily about data relating to the model being printed (from which the printer directly prints), in some cases also about setting up the device and other ways of interacting with it; For more details, see individual list items.

As for specific options, in addition to the traditional communication to a PC via USB or USB type C, modern printers may provide data transfer methods such as a card reader, its own USB port, a network communication via LAN, as well as a wireless communication via Wi-Fi. Here are the features of each of these options:

- Card reader. The printer has its own memory card slot. Most often designed to work with popular SD cards; however, even such media have several varieties, so it would not hurt to check the range of supported cards separately. In any case, the main purpose of this function is direct printing: by installing a card with a recorded project file in the printer, you can make a model without even connecting the device to a computer. There may be other ways to use the card reader - for example, copying materials from a model scanner to external media (see “Functions and capabilities”). Note that this function is convenient mainly...for exchanging data with a laptop - a slot for memory cards is available in almost any modern laptop.

- USB. Own USB connector on the printer body. It is used similarly to the card reader described above - for working with external media, in this case “flash drives” and other similar devices. The methods for using the USB port are also similar - mainly direct printing, but other options are also possible (copying data from a scanner, updating firmware, etc.).

— USB type C. Availability of a USB type C port in the interface communication shelf of the device. Such connectors are smaller in size compared to classic USB, and they also have a convenient double-sided design that allows you to connect the plug to either side. USB type C is supposed to be used to connect a 3D printer to a computer or mobile gadgets for managing and transferring printed files. At the same time, this connector can be used to connect external storage media.

- Wi-Fi. A wireless communication module that can be used both to connect the printer to local networks and for direct communication with tablets, laptops and other gadgets. Specific capabilities should be clarified separately, but here we note that a network communication allows you to use the printer as a common device for all computers on the local network and even access it from the Internet (although the latter may require specific settings). At the same time, Wi-Fi is a more convenient alternative to a wired LAN (see below), as it allows you to do without laying wires. As for direct communication with another gadget, this option is less common. It usually provides the ability to send projects for printing and access to basic settings; and to use such control, you may need to install a special application.

— Connection to PC (USB). Connecting to the USB port of a PC or laptop is the most popular way to directly connect a 3D printer to similar devices. The vast majority of modern computers are equipped with ports of this type, and even connectors of the outdated version of USB 2.0, not to mention newer standards, are enough to work with a printer. The communication itself can be used both to send print jobs and to control operating parameters - and it is through a PC/laptop that detailed settings that are not accessible through the screen on the printer itself are usually implemented. In addition, if necessary, you can share access to the unit via a computer via a local network or the Internet - even if the printer itself does not have a LAN connector or a Wi-Fi module. This is much more difficult to organize and not as convenient as using a network model with a direct communication to the local area, but it eliminates the need to overpay for additional connectivity options in the printer itself.

— Connection to PC (LAN). Connection to external devices via LAN - a standard connector for wired communication to computer networks. Actually, such a communication is intended mainly for using the printer as a network device - when access to printing and settings can be obtained from different computers on a local network, or even via the Internet. LAN is less convenient to connect than Wi-Fi, as it requires cabling, but this communication is more reliable and does not suffer from the presence of a large number of wireless devices nearby. In addition, the cable can be useful if the Wi-Fi router or access point does not reach the printer location.
Note that the standard use of LAN involves connecting to a network router, but a direct communication to a computer is also possible. The second option allows you to use this connector similarly to the USB described above - that is, only for one computer; but if this computer is connected to a local network and/or the Internet, you can also configure network access to the printer.

LCD display

The printer has its own screen. The specific functionality of such a screen can be different - from the simplest indicator for several characters and service symbols to a full-fledged color matrix capable of displaying inscriptions, drawings, etc.; These nuances should be clarified separately. However, in any case, this feature provides additional ease of management: various service information can be displayed on the screen to help the user set up printing parameters and control the process.
We would like to emphasize that touch displays are not included in this category; they are indicated as a separate function. But the screen size directly affects the comfort when working with the device.

There are also models with a touch screen, similar to those used in smartphones and tablets. Such a display is a full-fledged control tool, and it is more convenient and functional than more traditional options such as keypads: you can display a wide variety of control elements (buttons, sliders, lists, etc.) on the screen, selecting the optimal set of these elements for your needs. specific situation. In addition, the screen itself usually has a color matrix with a fairly high resolution, which makes it possible to display a wide variety of service data - even drawings and diagrams. Thanks to all this, most printer control functions can be performed through such a display; some models with such equipment are able to work even without connecting to a computer. The disad...vantages of touch displays include their higher cost than conventional ones, despite the fact that control via a computer is usually still more practical and visual. So this function is relatively rare these days.