Features
General drone specialization.
This parameter is specified in cases where the device has a clearly defined specialization and is noticeably different in equipment/functionality from conventional quadcopters
for entertainment purposes. In our time, the following types of drones are distinguished:
mini-drones,
racing vehicles(including in the form of racing mini-drones),
selfie drones, kits for battles, as well as
industrial/commercial solutions. Here are the features of each of these options:
—
FPV drones. Quadcopters with a “First Person View” transmit the image visible to the camera in real time. Those. During such a broadcast, the operator will see on the screen the same thing that directly falls into the field of view of the lens. This can be useful for photo and video shooting from the air, more precise control of a drone, and performing a number of specific tasks for reconnaissance or military purposes. Smartphones, tablets or other similar gadgets are used to view images from the camera; there are also remote controls with built-in screens (see “Display for FPV broadcast”) and specialized masks like virtual reality glasses (see “Helmet for FPV broadcast”).
— Mini-drone. Miniature devices with dimensions of no more tha
...n 150 mm (length and width) and a weight of no more than 100 g. This allows them to be easily transported from place to place, as well as to fly even in confined spaces - right up to city apartments. At the same time, many mini-drones are intended exclusively for entertainment, but there are also models with quite advanced characteristics. But the communication range of such equipment, as a rule, is quite limited (although, again, exceptions are possible); the same applies to carrying capacity.
- Racing. Devices originally created for drone racing. Such races require not only fast completion of the tracks, but also the ability to accurately fit into a given trajectory; Therefore, racing quadcopters differ not only in speed, but also in control accuracy. In addition, among such machines there may be modifications for complex aerobatics (freestyle, 3D) - in their characteristics the emphasis is even more shifted to accuracy and responsiveness. It should be borne in mind that most racing models are not only expensive, but also quite difficult to operate and are designed for experienced pilots; so it hardly makes sense to buy such a device for initial training or entertainment use.
— Racing mini-drone. A variation of the racing machines described above, characterized by reduced dimensions and having corresponding features. On the one hand, these features include ease of transportation and the ability to be used in confined spaces, on the other hand, relatively low load capacity and communication range.
— Selfie drone. Copters designed primarily for taking selfies. Among the main features of this technology are its small dimensions and the absence of a classic remote control: control is carried out either via a smartphone or using gestures through a special compact controller. This format of work eliminates the need to carry a bulky remote control and allows the operator to look natural in the frame - posing for a photo, rather than being distracted by controlling the drone. And some advanced models provide additional functions that make shooting even more convenient: face detection with autofocus and auto-centering, Follow Me mode (see “Flight Modes”), etc.
— Industrial/commercial. High-quality copters designed for professional use: photographing and video shooting from high altitudes in high resolution, “inspecting” industrial facilities and land plots, spraying fields, etc. In addition to their large dimensions, they are distinguished by a long range and flight altitude (and even and others are usually calculated in kilometers), high carrying capacity and extensive functionality. Thus, many models allow the installation of heavy advanced cameras (some are even initially designed for certain models of professional cameras), others have built-in “optics” with advanced capabilities (for example, with a high magnification factor or support for shooting in the IR range). The design usually includes a large abundance of sensors. And some models may have more specific functions - for example, detecting other aircraft nearby. Of course, such functionality is not cheap.
— Combat (battle kits). Drones designed to organize air battles. As a rule, they are sold in sets of two cars - so that the fight can be organized immediately, without purchasing anything additional; and most models allow you to organize group battles (at least “all against all”) - for this it is enough to buy several identical sets. The role of the “gun” in such a copter is usually played by an IR emitter, and hits are recorded using appropriate sensors. For control, a smartphone or other gadget is usually used, and the control application can provide very interesting and unusual functions - for example, statistics for each player with experience points received for battles, as well as special “skills” (temporary invulnerability, unusual maneuver, etc.) . p.), purchased for these points and activated by clicking on the corresponding icon in the application.Maximum flight time
Maximum flight time of a quadcopter on one full battery charge. This indicator is quite approximate, since it is most often indicated for ideal conditions - in real use, the flight time may be less than stated. However, by this indicator it is quite possible to evaluate the general capabilities of the copter and compare it with other models - a longer declared flight time in practice usually means higher autonomy.
Note that for modern copters, a flight time
of 20 minutes or more is considered a good indicator, and in the most “long-lasting” models it can exceed 40 minutes.
Control frequency
The frequency used to communicate between the aircraft and its control device (usually a remote control).
Some time ago, devices with analog control at a frequency of 27.145 MHz and 40 MHz could be found on sale. However, today these standards have practically fallen out of use and modern copter drones mainly use digital communications at a frequency of
2.4 GHz or
5.8 GHz(and some models support both of these ranges at once). This type of control has a number of advantages over analogue control. Firstly, it is less sensitive to interference: on an analog channel, a drone can mistake possible interference for a command and make an unexpected maneuver, while distortion of digital data is perceived precisely as distortion and does not affect the operation of the device. Secondly, the digital format provides high bandwidth, allowing you to even broadcast high-definition video directly from a drone. Thirdly, with this control, each “remote control-copter” pair is automatically allocated its own communication channel, and the system first checks whether it is being used by another pair of devices. Thanks to this, several devices can operate in close proximity without interfering with each other.
As for the features of specific frequency ranges, they are as follows:
- 2.4 GHz. The most popular standard in modern drones. This is due, on the one hand, to low cost (with all the
...advantages of digital control), and on the other hand, to expanded compatibility. The fact is that 2.4 GHz is the most common range of Wi-Fi modules in smartphones, tablets, etc.; so compatibility with this range allows you to easily supplement the drone with the ability to control it from an external gadget (however, this capability is not mandatory). One of the disadvantages of 2.4 GHz is also associated with the abundance of devices that use this frequency: in addition to Wi-Fi, these are Bluetooth modules, some other electronic devices, as well as most remote controls for radio-controlled equipment (not just copters). So this range is somewhat inferior to the 5.8-GHz range in terms of noise immunity; on the other hand, even with a busy broadcast, this moment is extremely rarely noticeable.
- 5.8 GHz. Further, after the 2.4 GHz described above, the development of digital standards. Allows for a longer communication range and is also more reliable, since there are significantly fewer extraneous signal sources at the 5.8 GHz frequency. In addition, the increase in frequency made it possible to increase bandwidth and effectively broadcast HD video from copters in the most advanced standards. However, some of the newest Wi-Fi standards also include support for this range, so drones in this category can also allow control from a smartphone (however, in such cases it is worth paying special attention to compatibility). The disadvantages of this option include the relatively high cost; however, thanks to the development and cheaper technology, support for 5.8 GHz can now be found even in relatively inexpensive copters.
- 2.4 GHz and 5.8 GHz. Support for both ranges described above - as a rule, with the ability to use any of them, at the user's choice. This provides additional convenience, reliability and versatility. For example, a model with two control methods (see “Control”) can use the 2.4 GHz band when working with a smartphone (which ensures a minimum of compatibility problems), and work with a remote control at 5.8 GHz (for maximum range and reliability). And drones controlled only from a remote control may even have a function such as automatically scanning ranges and selecting the least loaded one. At the same time, dual-band models are slightly more expensive than single-band ones, but the difference in price (especially with devices only at 5.8 GHz) is not particularly significant. So most modern copters capable of operating at a frequency of 5.8 GHz fall into this category.
When using specialized communication protocols, control signals between the copter and the remote control can be transmitted at special frequencies: 720 MHz, 915 (868) MHz.Remote control power source
The number and type of batteries used in the quadcopter control panel.
— AA. Replaceable batteries, colloquially known as "AA batteries". They are available not only in the form of disposable batteries, but also in the form of rechargeable batteries, are produced under various brands that differ in price and quality (which provides freedom of choice), and finding such elements on the market is usually not a problem. The power and capacity of AA elements are relatively small, but in most cases they are quite enough for normal operation of the transmitter for quite a long time. Usually, modern consoles require several of these batteries; in the most high consumption this number can reach 8.
— AAA. Also known as "pinky". In fact, a smaller version of popular AA elements (see above); has the same key features, but differs in more compact dimensions and, as a result, somewhat reduced power. This option is typical for low-cost class models, with a small range of the remote control.
— 3s. This marking does not describe the size of the battery, but its operating voltage and technology. It denotes a lithium-ion or lithium-polymer battery (see "Battery type"), assembled from three cells with a standard voltage of 3.7 V each, and thereby delivering an operating voltage of 11.1 V. The advantages of such a power supply are high power and capacity, which allows you to use the remote control for a long time without recharging. At the same time, batteries of thi...s type can vary significantly in size and weight, and not every model marked 3s will be compatible with the remote control. In addition, finding a spare battery is more difficult than a set of cells of a standard size.
— Proprietary battery. Powered by an original battery that is not related to any of the options described above. Such batteries can be much more powerful than replacement cells, making them well suited even for remotes with high power consumption. Their main advantage is the difficulty with quick replacement: the design of the remote control is at best poorly suited for this, and at worst the battery is generally non-removable. Also, finding the right replacement battery can be a major hassle.
Battery capacity
The capacity of the battery supplied with the quadcopter.
Theoretically, a larger battery can provide a longer charge time. However, keep in mind that this time also depends on the power consumption of the copter — and it is determined by the power of the engines, dimensions and weight, as well as a number of other features. In addition, the actual battery capacity is determined not only by ampere-hours, but also by its nominal voltage. Therefore, only quadcopters with the same battery voltage and similar operating characteristics can be compared by amp-hours; and it is best to evaluate battery life by directly claimed flight time (see below).
Dimensions
General dimensions of the device. A fairly obvious parameter; we only note that for models with a folding structure (see above), in this paragraph, the dimensions in the working (unfolded) position are given, and the dimensions in the folded form are specified separately.