Укр|Eng|Рус
Ukraine
Catalog   /   Computing   /   Networking   /   Switches

Comparison D-Link DGS-3130-30S vs MikroTik CRS317-1G-16S+RM

Add to comparison
D-Link DGS-3130-30S
MikroTik CRS317-1G-16S+RM
D-Link DGS-3130-30SMikroTik CRS317-1G-16S+RM
Compare prices 31Compare prices 61
TOP sellers
Main
The switch has an additional MGMT and USB management port.
Typemanaged 3 level (L3)managed 3 level (L3)
Mountrack-mountrack-mount
Ports
Gigabit Ethernet1
10 Gigabit Ethernet2
SFP (optics)2416
SFP+ (optics)4
Uplink6
Uplink typeSFP+/10Gigabit Ethernet
Console port
Features
Control
SSH
Telnet
Web interface
SNMP
SSH
Telnet
Web interface
SNMP
Basic features
DHCP server
stacking
 
VLAN
loop protection
access rate limit
DHCP server
 
Link Aggregation
VLAN
loop protection
access rate limit
Routing
Static
Standards
 
 
 
RIP
OSPF
BGP, VRRP, ECMP
General
PSUbuilt-inbuilt-in
Operating temperature-20 °C ~ +60 °C
Dimensions (WxDxH)440x250x44 mm443x224x44 mm
Weight3210 g
Added to E-Catalogjuly 2019march 2018

Gigabit Ethernet

The number of standard Gigabit Ethernet RJ-45 network connectors provided in the design of the switch.

As the name suggests, these connectors provide data transfer rates up to 1 Gbps. Initially, Gigabit Ethernet was considered a professional standard, and even now the real needs for such speeds arise mainly when performing special tasks. Nevertheless, even relatively inexpensive computers are now equipped with gigabit network adapters, not to mention more advanced technology.

As for the number of connectors, it corresponds to the number of network devices that can be connected to the "switch" directly, without the use of additional equipment. In the case of Gigabit Ethernet, the number of connectors up to 10 inclusive is considered relatively small, from 10 to 25 — average, and the presence of more than 25 ports of this type is typical for professional-level models. At the same time, it is worth noting that in some "switches" individual connectors of this type are combined with optical SFP or SFP + (see below). Such connectors are marked "combo" and are taken into account both in the RJ-45 count and in the SFP/SFP+ count.

10 Gigabit Ethernet

The number of standard network connectors RJ-45 format 10Gigabit Ethernet, provided in the design of the switch.

This format belongs to professional ones: it provides speeds up to 10 Gbps (which is reflected in the name) and is intended mainly for tasks related to processing large volumes of traffic. Nevertheless, Gigabit Ethernet support is now found even in PC and laptop network controllers, not to mention more specialized equipment. And the number of connectors corresponds to the number of devices that can be directly connected to the switch via this interface at the same time. Note that in some "switches" individual connectors of this type are combined with optical SFP or SFP + (see below). Such connectors are marked "combo" and are taken into account both when counting RJ-45 and when counting SFP / SFP +.

SFP (optics)

The number of optical network ports of the SFP standard provided in the design of the switch. We emphasize that we are talking about "ordinary" SFPs; SFP+ data is usually listed separately.

Specifically, in switches, the marking “SFP” usually means a connector for fiber with a connection speed of 1 Gbps. Technically, this is not much compared to RJ-45 speeds; however, this connection format has a number of advantages. One of the main ones is a greater effective range: the mentioned gigabit standard used in switches works with a cable length of up to 550 m, and by the standards of fiber, this is still very little. True, the cable itself is sensitive to kinks and requires quite delicate handling; on the other hand, it is completely immune to electromagnetic interference. On the other hand, in general, the SFP format is noticeably less popular in network equipment than RJ-45; therefore, there are few ports of this type even in advanced devices. So, solutions for 2 or 4 SFP connectors are most widely used, although there are more - 6, 8, or even 10 or more. It is also worth considering that the so-called combo connectors can be used in switches, combining SFP and RJ-45; the presence of such ports is specified in the notes, they are taken into account both in the calculation of RJ-45 and in the calculation of SFP.

To clarify, Uplink inputs also often use this type of connector; however,...their number is specified separately (see below).

SFP+ (optics)

The number of optical SFP+ ports provided in the design of the switch. Let's clarify right away that we are talking about ordinary network ports; Uplink inputs can also use this interface, however their number is specified separately even in this case (see below).

The general advantages of optical fiber over conventional Ethernet cable are longer communication range and insensitivity to electromagnetic interference. Specifically, SFP+ is a development of the original SFP standard; in switches, such connectors typically operate at a speed of 10 Gbps. As for the number of such ports, for all its advantages, fiber optics in network equipment is still used quite rarely. Therefore, the most common switches are 1 - 2, less often 4 SFP + connectors, although there are more. It is also worth considering that the so-called combo connectors can be used in switches, combining SFP + and RJ-45; the presence of such ports is specified in the notes, they are taken into account both in the calculation of RJ-45 and in the calculation of SFP+.

Uplink

The number of Uplink connectors provided in the design of the switch.

“Uplink” in this case is not a type, but a connector specialization: this is the name of the network interface through which the switch (and network devices connected to it) communicate with external networks (including the Internet) or network segments. In other words, this is a kind of "gate" through which all traffic from the network segment served by the switch is transmitted further. Uplink, in particular, can be used to connect to a similar "switch" (for horizontal network expansion) or to a higher level device (like a core switch).

Accordingly, the number of Uplink connectors is the maximum number of external connections that the switch can provide without using additional equipment. The specific type of such a connector may be different, but this is usually one of the varieties of LAN or SFP; see "Uplink type" for details.

Uplink type

The type of connector(s) used in the switch as an Uplink interface.

See above for details on such an interface; here we note that the same network ports are usually used as Uplink, as for connecting individual devices to the switch. Here are the main options for such connectors:

- Fast Ethernet - LAN network connector (for "twisted pair") with support for speeds up to 100 Mbit. Such a speed is considered low by modern standards, while the Uplink port puts forward increased bandwidth requirements - after all, traffic from all devices served by the switch goes through it. Therefore, in this role, Fast Ethernet ports are used mainly in inexpensive and outdated models.

- Gigabit Ethernet - LAN connector with support for speeds up to 1 Gb / s. Such a speed is often enough even for a fairly extensive network, while the connectors themselves are relatively inexpensive.

- 2.5 Gigabit Ethernet - LAN connector with support for speeds up to 2.5 Gbps.

- 10Gigabit Ethernet - LAN connector with support for speeds up to 10 Gbps. Such features allow you to work comfortably even with very large volumes of traffic, but they significantly affect the price of the switch. Therefore, this option is rare, mainly in high-end models.

— SFP. Socket for fiber optic cable that supports speeds of about 1 Gb / s. At the same time, over Gigabit Ethernet, which has a similar bandwidth, this connector has one noticeable advantage - a lon...ger connection range (usually up to 550 m).

- SFP+. An evolution of the SFP standard described above. The switches usually provide a connection speed of 10 Gb / s; like the original standard, it noticeably outperforms an Ethernet connection in terms of effective range. On the other hand, the real need for such speeds does not arise very often, and SFP+ is quite expensive. Therefore, the presence of such Uplink connectors is typical mainly for high-end models with a large number of ports.

— SFP28. Another development of SFP with increased throughput up to 25 Gbps.

— QSFP / QSFP+. The fastest SFPs up to 40 Gbps.

We also note that the connectors described above (except perhaps Fast Ethernet) are rarely used as the only type of Uplink input. Combinations of electrical and fiber optic ports - SFP / Gigabit Ethernet and SFP + / 10Gigabit Ethernet - have become noticeably more common. This provides versatility in connection, allowing you to use the type of cable that is most convenient in a given situation; and if necessary, of course, you can use all Uplink inputs at once. However, it is worth considering that in some models, Ethernet and SFP interfaces can be combined in one physical connector. So before buying this nuance does not hurt to clarify separately.

There are also switches that use a combination of two types of SFP - SFP/SFP+; however, there are few such models and they mainly belong to the professional level.

Console port

The switch has a console port. This connector is used to control the device settings from a separate computer, which plays the role of a control panel — a console. The advantage of this format of operation is that access to the functions of the switch does not depend on the state of the network; in addition, special utilities can be used on the console that provide more extensive capabilities than a regular web interface or network protocols (see "Management"). Most often, the console port uses an RS-232 connector.

Basic features

DHCP server. A feature that makes it easy to manage the IP addresses of devices connected to the switch. Without its own IP address, the correct operation of the network device is impossible; and DHCP support allows you to assign these addresses both manually and fully automatically. At the same time, the administrator can set additional parameters for the automatic mode (range of addresses, maximum time for using one address). And even in fully manual mode, work with addresses is performed only by means of the switch itself (whereas without DHCP, these parameters would also have to be specified in the settings of each device on the network).

Stacking support. The ability to operate the device in stack mode. A stack consists of several switches that are perceived by the network as one “switch”, with one MAC address, one IP address, and with a total number of connectors equal to the total number of ports in all involved devices. This feature is useful if you want to build an extensive network that lacks the capabilities of a single switch, but do not want to complicate the topology.

Link Aggregation. Switch support for link aggregation technology. This technology allows you to combine several parallel physical communication channels into one logical one, which increases the speed and reliability of the connection. Simply put, a switch with s...uch a function can be connected to another device (for example, a router) not with one cable, but with two or even more at once. The increase in speed in this case occurs due to the summation of the throughput of all physical channels; however, the total speed may be less than the sum of the speeds — on the other hand, combining several relatively slow connectors is often cheaper than using equipment with a more advanced single interface. And the increase in reliability is carried out, firstly, by distributing the total load over individual physical channels, and secondly, by means of "hot" redundancy: the failure of one port or cable can reduce the speed, but does not lead to a complete disconnection, and when the channel is restored, the channel is switched on automatically.
Note that both the standard LACP protocol and non-standard proprietary technologies can be used for Link Aggregation (the latter is typical, for example, for Cisco switches). In addition, there are quite a few alternative names for this technology — port trunking, link bundling, etc.; sometimes the difference is only in the name, sometimes there are technical nuances. All these details should be clarified separately.

VLAN. Support of the VLAN function by the switch — virtual local area networks. In this case, the meaning of this function is the ability to create separate logical (virtual) local networks within the physical "local area". Thus, it is possible, for example, to separate departments in a large organization, creating for each of them its own local network. The organization of VLAN allows you to reduce the load on network equipment, as well as increase the degree of data protection.

— Protection against loops. The switch has a loop protection function. The loop in this case can be described as a situation where the same signal is launched in the network in an endless loop. This may be due to incorrect cable connection, the use of redundant links and some other reasons, but anyway, such a phenomenon can “put down” the network, which means it is highly undesirable. Security prevents loops, usually by disabling looped ports.

— Limiting the speed of access. The ability to limit the data exchange rate for individual switch ports. Thus, it is possible to reduce the load on the network and prevent the "clogging" of the channel by individual terminals.

Note that the matter is not limited to this list: other features may be found in modern switches.

Static

Recall that routing is the definition of the best path through which each data packet can be delivered to the recipient. For this, special tables are used, stored in the memory of the control network device with the routing function. According to the method of filling these tables, this procedure is divided into two main varieties — static and dynamic.

Static routing is a method in which all data routes (entries in the routing table) are manually written by the administrator; this applies both to the initial creation of the table and to making changes to it when changes are made to the network configuration. The main advantage of this method is the minimum load on the switch processor, which has a positive effect on the speed and reliability of the network. The main disadvantages of static routing are associated with the need for manual control. So, the larger the network, the more complex and time-consuming it is to manage it; Administrator's inattention can become an additional cause of failures; and diagnosing some problems is noticeably more difficult — for example, if there is a failure at the link layer, the static route remains visible as active, although no data is transmitted.
Price graph