Rated power consumed by the vacuum cleaner. In models with power adjustment (see below), the maximum value is taken into account in this case. We are talking about the characteristics of the installed motor, which is the main, and in most vacuum cleaners, the only consumer of energy.
Higher power increases suction force and improves overall cleaning efficiency. In addition, a more powerful unit is easier to equip with a capacious dust collector. On the other hand, only vacuum cleaners of the same type with the same types of dust collectors can be directly compared by this parameter (see above for both). And even in such cases, the actual suction force (see below) may be different — and it is it that determines the real efficiency. However, the total power also allows you to generally evaluate the capabilities of the vacuum cleaner, including in comparison: a 1500 W model will significantly outperform its 800 W counterpart in efficiency (although it is impossible to say exactly by how much). But what definitely depends on this indicator is energy consumption.
As for specific power values, they are largely related to the type of device. For example, handheld models, robots and uproght units have low power —
less than 1500 W(and often noticeably less). Such values are quite popular among other types of vacuum cleaners (conventional, industrial, workshop, etc.), but among them there are already more solid indicators —
...href="/en/list/90/pr-1067/">1500 – 1750 W, 1750 – 2000 W and even more than 2000 W.The presence of a
HEPA fine filter in the vacuum cleaner; also in this paragraph, the specific class of this filter is often specified.
HEPA (High Efficiency Particulate Absorbing) filters are designed to purify the air from the smallest mechanical contaminants — up to tenths of a micron in size. It allows you to trap not only fine dust but even bacteria. For comparison: the size of most bacteria starts at 0.5 microns, and the effectiveness of HEPA filters is evaluated by the ability to retain particles with a size of 0.1 – 0.3 microns. The most advanced such filters (
class 13 and above) are able to remove more than 99.9% of these particles from the air. Here is a more detailed description of the different classes:
— HEPA 10 – traps at least 85% of particles with a size of 0.1 – 0.3 microns;
— HEPA 11 – at least 95% of such particles;
— HEPA 12 – not less than 99.5%;
— HEPA 13 – not less than 99.95%;
— HEPA 14 – not less than 99.995%;
Note that pollution with a size of 0.1 – 0.3 microns is the worst-kept by HEPA filters, so with particles of other sizes (both larger and smaller), the efficiency of such elements will be even higher.
Regarding the choice for this parameter, it is worth noting that, in fact, it does not always make sense to pursue a high filtration class. For example, during wet cleaning with a washing vacuum cleaner (se
...e above), the HEPA filter, in fact, is not needed at all (in many models, it is recommended to remove it altogether for such cases). So if you plan to use such a vacuum cleaner mainly for washing, you can ignore this parameter. Another specific case is industrial units (see "Type"): they are often used for rough cleaning of large debris, where thorough air filtration is not required.A feature found in battery-powered vacuum cleaners - most robots, as well as some upright models (see "Type").
The charging station combines the functions of a charger and a storage device. Its specific design may be different. Robots are equipped with a floor docking station; most of these devices can remember the location of the station and, if necessary, return to it on their own — for recharging or at the end of the program. In other types of vacuum cleaners, the charging station usually is wall-mounted. The vacuum cleaner hangs on it while connecting to a power source to charge the battery. Some of the wall attachments can also be used to charge the battery removed from the vacuum cleaner. However, we emphasize that traditional chargers that do not provide for hanging on the wall and fixing the entire vacuum cleaner are not considered charging stations. Less common are floor-standing charging stations for upright vacuum cleaners and desktop docking stations for charging portable (handheld) models.
In any case, this function is almost standard for robots, but upright and handheld household vacuum cleaners equipped with a charging station, in general, are quite advanced and expensive devices.
The presence of
light-emitting diode (LED) lighting in the design of the vacuum cleaner.
Such lighting is placed on the working nozzle or close to it and illuminates the area being processed by the vacuum cleaner. Its main purpose is to provide convenience when working in dark places, such as under sofas/beds, dark corners, etc. At the same time, the lighting can be useful in normal brightness lighting: it well reveals dust and debris on smooth surfaces like linoleum or laminate.
As for the LED lighting vacuum cleaners themselves, most of them belong to one or another type of upright ones (see "Type") — it is in such units that this function is technically easiest to implement. It is also found in some conventional and handheld household vacuum cleaners. However, there are a few such models on the market, and they are not cheap due to additional design features. For example, in a conventional vacuum cleaner, for the lighting to work, not only a tube is required, but also a hose of a special design — with wiring to supply power to the LEDs.