Укр|Eng|Рус
Ukraine
Catalog   /   Sound & Hi-Fi   /   Headphones

Comparison Haylou GT2 vs Haylou GT1

Add to comparison
Haylou GT2
Haylou GT1
Haylou GT2Haylou GT1
from 499 ₴
Outdated Product
Compare prices 6
User reviews
0
0
0
1
TOP sellers
Main
Charging from USB Type A, which is built into the body of the charging case.
Stylish and compact charging case. Waterproof IPX5. Support for voice assistants.
Connection and design
Design
in-ear
in-ear
Microphonebuilt into the bodybuilt into the body
Connection typewirelesswireless
Connection
Bluetooth v 5.0
Bluetooth v 5.0
Range10 m10 m
Specs
Soundstereostereo
Impedance16 Ohm32 Ohm
Frequency range20 – 20000 Hz20 – 20000 Hz
Sensitivity110 dB110 dB
Speaker size7.2 mm7.2 mm
Emitter typedynamicdynamic
Features
Codec support
 
AAC
Voice assistantApple Siri / Google Assistant
Power supply
Power sourcebatterybattery
Headphone battery capacity43 mAh43 mAh
Charging time2 h1.5 h
Operating time (music)3.5 h3.5 h
Operating time (with case)12 h
Charging portmicroUSB
General
Touch control
WaterproofIPX5IPX5
Weight4 g4 g
In box
silicone tips
charging case /380 mAh/
silicone tips
charging case /300 mAh/
Color
Added to E-Catalogjanuary 2020december 2019

Impedance

Impedance refers to the headphone's nominal resistance to AC current, such as an audio signal.

Other things being equal, a higher impedance reduces distortion, but requires a more powerful amplifier — otherwise the headphones simply will not be able to produce sufficient volume. Thus, the choice of resistance depends primarily on which signal source you plan to connect the "ears". So, for a portable gadget (smartphone, pocket player), an indicator of 16 ohms or less is considered optimal, 17 – 32 ohms is not bad. Higher values — 33 – 64 ohms and 65 – 96 ohms — will require quite powerful amplifiers, like those used in computers and televisions. And models with a resistance of 96 – 250 ohms and above are designed mainly for Hi-End audio equipment and professional use; for such cases, detailed recommendations for selection can be found in special sources.

Codec support

Codecs and additional audio processing technologies supported by Bluetooth headphones (see “Connection”). Initially, sound transmission via Bluetooth involves fairly strong signal compression; This is not critical when transmitting speech, but can greatly spoil the impression when listening to music. To eliminate this shortcoming, various technologies are used, in particular aptX, aptX HD, aptX Low Latency, aptX Adaptive, AAC, LDAC and LHDC. Of course, to use any of the technologies, it must be supported not only by the “ears”, but also by the Bluetooth device with which they are used. Here are the main features of each option:

- aptX. A Bluetooth codec designed to significantly improve the quality of audio transmitted over Bluetooth. According to the creators, it allows you to achieve quality comparable to Audio CD (16-bits/44.1kHz). The benefits of aptX are most noticeable when listening to high-quality content (such as lossless formats), but even on regular MP3 it can provide a noticeable sound improvement.

- aptX HD. Development and improvement of the original aptX, allowing for sound purity comparable to Hi-Res audio (24-bits/48kHz). As in the original, the benefits of aptX HD are noticeable m...ainly on high-quality audio, although this codec will not be out of place for MP3.

- aptX Low Latency. A specific version of aptX described above, designed not so much to improve sound quality, but to reduce delays in signal transmission. Such delays inevitably occur when working via Bluetooth; They are not critical for listening to music, but when watching videos or playing games, there may be a noticeable desynchronization between the image and sound. The aptX LL codec eliminates this phenomenon, reducing latency to 32 ms - such a difference is imperceptible to human perception (although for serious tasks like studio audio work it is still too high). aptX LL support is found mainly in gaming headphones.

- aptX Adaptive. Further development of aptX; actually combines the capabilities of aptX HD and aptX Low Latency, but is not limited to this. One of the main features of this standard is the so-called adaptive bitrate: the codec automatically adjusts the actual data transfer rate based on the characteristics of the broadcast content (music, game audio, voice communications, etc.) and the congestion of the frequencies used. This, in particular, helps reduce energy consumption and increase communication reliability; and special algorithms allow you to broadcast sound quality comparable to aptX HD (24 bits/48 kHz), using much less transmitted data. And the minimum data transfer latency (at the aptX LL level) makes this codec excellent for games and movies.

- A.A.C. A Bluetooth codec used primarily in portable Apple gadgets. In terms of capabilities, it is noticeably inferior to more advanced standards like aptX or LDAC: the sound quality when using AAC is comparable to an average MP3 file. However, for listening to the same MP3s, this is quite enough; the difference becomes noticeable only on more advanced formats. AAC hardware requirements are low, and its support in headphones is inexpensive.

— LDAC. Sony's proprietary Bluetooth codec. It surpasses even aptX HD in terms of bandwidth and potential sound quality, providing performance at the Hi-Res level of 24-bits/96kHz audio; there is even an opinion that this is the maximum quality that it makes sense to provide in wireless headphones - further improvement will simply be imperceptible to the human ear. On the other hand, supporting this standard is not cheap, and there are still quite a few gadgets with such support - these are, in particular, Sony smartphones, as well as mid- and high-end devices running Android 8.0 Oreo and later versions.

- LHDC. LHDC (Low latency High-Definition audio Codec) is a high-definition, low-latency codec developed by the Hi-Res Wireless Audio Alliance and Savitech. In the vast majority of cases, its support is implemented at the hardware level in Huawei and Xiaomi smartphones. The codec is also known as HWA (Hi-Res Wireless Audio). When using LHDC, signal transmission from the phone to the headphones is carried out with a bits rate of up to 900 kbps, a bits depth of up to 24 bits and a sampling frequency of up to 96 kHz. This ensures a stable and reliable communication with reduced latency. The codec is optimally suited for high-end wireless headphones and advanced digital audio formats.

Voice assistant

Headphones with voice assistant support the user interaction with the device to a new level. The call of the assistant. is carried out by pressing one of the control buttons on the headphones or by a specific voice command (for example, «Ok, Google» for the Google Assistant virtual apprentice). The assistant pauses playback, instantly changes the volume of the music, can notify the user of new alerts, helps to answer messages without the help of hands, and commands are given to the paired smartphone via voice control from the headphones.

Charging time

The time required to fully charge the battery in properly powered headphones (see above).

In this case, we mean the battery charging time from 0 to 100% when using a standard charger (or a third-party charger with identical characteristics). Accordingly, in fact, this indicator may differ from the claimed one, depending on the specifics of the situation. However, in general, it is quite possible to evaluate different models and compare them with each other: headphones with a shorter claimed charging time will in fact charge faster (ceteris paribus).

Also note that an increase in battery capacity (and headphone battery life) inevitably implies an increase in charging time. To compensate for this moment, special fast charging technologies can be used — however, they affect the cost and require the use of specialized charger.

Operating time (with case)

The maximum operating time of TWS headphones, taking into account recharging with a native case. But this time is not continuous use, it takes into account breaks for "refueling". Anyway, this parameter allows you to understand for how long you can leave the network (for example, how many nights to spend in a tent to the accompaniment of your favorite artist).

Charging port

The type of connector used to charge the built-in headphone battery, or more precisely, to connect an external charger. The role of such a device can be played by a network or car adapter, a power bank, or even a USB port of a PC or laptop (if the appropriate cable is available). At the same time, in true wireless models (available with a long stem, a short stem, without a stem, with a behind-the-ear mount and a clip (Clip-on)), the “charger” wire is connected to a special docking station, where the “ears” are placed during charging (with In this case, the station itself usually has its own battery and can also work as an autonomous power bank). And in wireless and combined solutions of a more traditional design, the charging input is often located on the headphone body itself. As for connectors, the most common options are:

- microUSB. A smaller version of the USB connector designed for portable devices. It appeared quite a long time ago, but does not lose popularity in our time and is used by the vast majority of manufacturers.

- USB C. A miniature USB connector, positioned, among other things, as a potential successor to microUSB. Unlike its predecessor, it has a double-sided design, thanks to w...hich the plug can be inserted into the socket on either side. It is still relatively rare, but the situation is likely to change in the coming years.

- Lightning. Apple branded connector. Like USB C, it has a reversible design, while being somewhat more convenient and reliable, but the use of Lightning is limited to products from Apple itself and its Beats brand.

Touch control

This feature means that the controls in the headphones are not traditional buttons that you need to press, but sensors that are triggered by touch.

Touch control is somewhat more expensive than push-button control, but it has a number of advantages over it. Firstly, it gives the headphones a neat and technological appearance, with a minimum of protruding parts. Secondly, due to the absence of moving parts, the sensors are more reliable and compact. Thirdly, it is purely physically more convenient to use them, especially with the small size of the headphones. These moments are especially relevant for the "ears" of the true wireless format (see "Type of cable"), so it is in them that touch control is most often found. However, there are exceptions to this rule. Also note that the difference in price between buttons and sensors is often almost imperceptible compared to the cost of headphones in general.
Price graph
Haylou GT1 often compared