Укр|Eng|Рус
Ukraine
Catalog   /   Climate, Heating, Water Heating   /   Heating & Cooling   /   Air Conditioners

Comparison Toshiba RAS-B13N3KVP-E 35 m² vs Mitsubishi Heavy Premium SRK35ZS-S/SRC35ZS-S 35 m²

Add to comparison
Toshiba RAS-B13N3KVP-E 35 m²
Mitsubishi Heavy Premium SRK35ZS-S/SRC35ZS-S 35 m²
Toshiba RAS-B13N3KVP-E 35 m²Mitsubishi Heavy Premium SRK35ZS-S/SRC35ZS-S 35 m²
from 20 000 ₴
Expecting restock
Compare prices 1
User reviews
0
0
0
1
TOP sellers
Typemulti split systemsplit system
Installationwallwall
In box
 
 
indoor unit
outdoor unit
Number of indoor units1
Performance
Operating modescooling/heating/dehumidification/ventilationcooling/heating/dehumidification/ventilation
Recommended room area35 m²35 m²
Power consumption (cooling/heating)1010/1000 W
Cooling capacity3520 W3500 W
Heating capacity4220 W4000 W
Air flow732 m³/h738 m³/h
Noise level (max/min)44/27 dB
41/19 dB /outdoor unit - 50 dB/
Efficiency
Cooling EER3.47
Heating COP4
Energy efficiency EER (cooling)A
Energy efficiency COP (heating)A
Features
Functions
 
automode
timer
night mode
auto restart
 
 
 
 
inverter
automode
timer
night mode
auto restart
vertical blinds drive
emergency heating
self-cleaning
self-diagnosis
Specs
Refrigerant typeR410АR410А
Maximum height difference between units10 m
Maximum pipe length15 m
Min. T for cooling mode-10 °C
Min. T for heating mode-15 °C
Filters
 
 
catalytic
anti-allergic
General specs
Indoor unit dimensions (WxHxD)
790x275x225 mm /weight — 10 kg/
870x290x230 mm /weight - 9.5 kg/
Dimensions of window/outdoor unit (WxHxD)
780x540x290 mm /weight - 31.5 kg/
Color
Added to E-Catalogapril 2018february 2017

Type

General type of air conditioner.

Nowadays, on the market you can mainly find split systems, multi split systems, portable devices. More rare options are window models and monoblocks. Here is a more detailed description of each of these options:

— Split system. The most popular type of modern air conditioner. Such models consist of two units — indoor and outdoor. The outdoor unit is responsible for heat exchange with the environment — it is through it that excess heat is discharged (or vice versa, external heat is taken into the room, when working for heating). The indoor units are installed in the room, the conditioned air comes from it. Both units are connected by pipes through which the coolant circulates. Air conditioners of this type are convenient, in particular, because the indoor unit can be installed almost anywhere in the room; and in some models, the indoor units have an unusual design (see below), which allows such devices to fit even into non-standard interiors. Also note that split systems can have almost any performance, among them there are models of both household and industrial levels, and the installation of such air conditioners is relatively simple. All this led to their popularity.

— Multi split system. A kind of split system (see above), in which there are several indoor ones for...one outdoor unit. This arrangement allows using one air conditioner to organize climate control in several rooms at once, while the installation of such a system is easier, and the cost is cheaper than using separate split systems.

— Portable. Air conditioners made as a single unit, designed for the possibility of frequent movement from place to place; in some models, wheels are even provided for this. For heat exchange with the external environment, such devices use air ducts that lead out of a window, doorway, ventilation shaft, etc. A mobile air conditioner can be a real salvation where it is not possible to install a stationary device: it does not require complex installation work, just figure out where to bring the duct pipe. In addition, such a unit can be useful in a situation where you need to cool several rooms in turn, and it is difficult or impossible to install a stationary air conditioner for this purpose.

— Window. Air conditioners made as a single unit, installed directly in the window opening — so that one side of the device is indoors, the other is outdoors. It is one of the first types of air conditioners, but, nowadays, it is considered obsolete and rare — mainly due to the complexity of installation and a very limited choice of installation locations. In addition, such an assembly inevitably covers part of the window, which in some cases is also a serious drawback.

— Monoblock. Stationary air conditioners in the form of a single unit with wall installation. Such a unit is located inside the room, on the wall facing the outside, and heat exchange is provided by air ducts passed through the wall, through which the outside air enters the heat exchanger and exits it. Such a design allows you to do without outdoor units, which is very convenient in some situations — for example, if an air conditioner is needed for a historical building or house in a strictly defined design that does not allow unnecessary "decorations" on the facade. On the other hand, monoblocks are expensive, and the possibilities for their installation are very limited.

In box

A set of components included in the delivery of the air conditioner.

This parameter is indicated only for split and multi split systems (see "Type") — other types of air conditioners are made as single units, and there is simply no need to specify the complete set for them. Split system can be supplied both in a complete set, and in separate units (both indoor and outdoor). Among traditional split systems, the first option is the most popular: it is most convenient to buy such a solution as a ready-made kit, and the purchase of a separate unit is required if one of the original units breaks down. But the components of multi split air conditioners, on the contrary, are most often sold separately — this makes it easy to assemble such a system for a specific situation by separately purchasing an outdoor unit and the required number of indoor ones.

Number of indoor units

The number of indoor units supplied in the kit.

Split and multi split systems are divided into outdoor and indoor units (see "Type"). And the number of indoor units in the kit depends on how many rooms the air conditioner can serve out of the box. However, this parameter is more of a reference than practically significant. So, in a complete set (see "In box") split systems are supplied with one indoor unit. And in the multi split system, a complete set is rare and usually includes two such units; it is assumed that for the organization of a more extensive system, it is more convenient to purchase an outdoor unit and separately purchase the required number of indoor ones for it. Separate indoor units of multi split systems are also sold one by one.

Power consumption (cooling/heating)

Power consumption of the air conditioner in cooling and heating mode; for models without a heating mode, only one number is given. This parameter should not be confused with the effective capacity of the air conditioner. Effective capacity is the amount of heat that the unit can "pump" into the environment or the room. This item also indicates the amount of electricity consumed by the device from the network.

In all air conditioners, the power consumption is several times lower than the effective capacity. It is due to the peculiarities of the operation of such units. At the same time, devices with the same efficiency may differ in power consumption. In such cases, the more economical models usually cost more, but with continued use, the difference can quickly pay off with less electricity consumption.

Also, two points related to electrical engineering depend on this nuance. Firstly, power consumption affects power requirements: models up to 3 – 3.5 kW can be connected to a regular outlet, while higher power consumption requires a three-phase connection (see below). Secondly, the power consumption is needed to calculate the load on the mains and the necessary parameters of additional equipment: stabilizers, emergency generators, uninterruptible power supplies, etc.

Cooling capacity

The heat output of the air conditioner when operating in cooling mode, in other words, the amount of heat energy that the unit can transfer from the room to the external environment when operating in this mode.

In general, cooling capacityup to 2 kW for modern air conditioners is considered very modest, 2–3 kW is low, 3–4 kW is medium, 4–6 kW is above average, and in the heaviest and most productive models this figure can be 6–8 kW and even more. Also, the conventional unit BTU can be used to denote capacity; in our catalogue, 1 BTU corresponds approximately to 0.293 W, however, for the convenience of choice, some deviations are allowed: for example, the 7000 BTU category includes units with power from 1.8 to 2.3 kW. Also on sale you can find air conditioners for 9000, 12000, 18000, 24000 BTU and more.

As for the choice for this indicator, the simplest formula is as follows: at least 100 W or 1/3 BTU of thermal power should fall on 1 m2 of the area of the room. Thus, to estimate the maximum area served, the power in watts should...be divided by 100, and the power in BTU should be multiplied by three. However, all these calculations are relevant only for standard residential/office premises with a ceiling height of about 2.5-3 m. For other conditions, you need to use a more complex formula, which is the sum of three parameters: 1) Q1 - the heat gain of the room itself, calculated by multiplying the area of the room by the height of the ceilings and the heat transfer coefficient (it ranges from 30 to 40 W, depending on the conditions); 2) Q2 - heat gain from operating equipment (on average, a third of the total power of all electrical appliances); 3) Q3 - heat gain from each person (from 100 W for sedentary work to 300 W for heavy physical exertion). More detailed recommendations regarding such calculations can be found in special sources.

A special case is represented by separately sold outdoor units of air conditioners (see "In box"). In this case, the capacity in cooling mode is the highest heating capacity of the indoor unit (in the same mode, of course) that can be connected to this outdoor unit. For multi split systems, respectively, the total indicator of all indoor units is taken into account.

Heating capacity

The power provided by the air conditioner in heating mode. It is indicated by the amount of thermal energy that the air conditioner can "pump" from the external environment into the room when operating in this mode. The most modest modern units have a heating capacity of 2 – 3 kW or even less, in the most performant it reaches 6 – 8 kW or more.

When evaluating this capacity, the same formulas are relevant that are used in calculating the power of traditional heating. So, for the full heating of an ordinary residential or office space (with ceilings of 2.5-3 m and normal thermal insulation), a thermal power of at least 100 W is required. There are more detailed calculation rules that allow you to calculate the necessary characteristics for other conditions. And if we are talking about a separately sold outdoor unit (see "In box"), then the meaning of this parameter is somewhat different. It indicates the maximum power of the indoor unit that can be connected to this outdoor unit to work in heating mode. For multi split systems, respectively, the total capacity of all indoor units is taken into account.

Recall that most air conditioners are not designed for use as full-fledged heating systems. However, such a unit can be a good addition to the main heating system. At the same time, air conditioners are less expen...sive than electric heaters: the heater has an effective power equal to energy consumption, and the air conditioner consumes much less energy than it supplies to the heated room.

Also note that the unit BTU (more precisely, BTU/hour) can also be used to indicate the effective capacity (including in heating mode). 1 BTU (BTU/h) initially corresponds to 0.293 W, and the numbers in the characteristics of air conditioners correspond to thousands of BTU/h. For example, a 7 BTU air conditioner will produce an effective capacity of 7000 BTU/h, or about 2 kW. Such marking is convenient because BTU can easily determine the recommended area of a standard room (in m2): just multiply the figure indicated in the characteristics by 3. So, in our example, the power of 7 BTU will correspond to an area of 7*3=21 m2.

Air flow

The amount of air that an air conditioner can pass through itself in an hour.

This parameter depends on the power and the overall level of the device, but there is no strict dependence here: models with the same effective capacity may differ in air circulation speed. In such cases, it is worth proceeding from the fact that a higher speed contributes to uniform cooling/heating of the air and reduces the time required to create a given microclimate; on the other hand, higher-performing air conditioners use more energy, are larger and/or cost more.

Noise level (max/min)

The maximum and minimum level of noise produced by the air conditioner during operation; for split and multi split systems (see "Type"), by default, it is indicated for the indoor unit, and the data for the outdoor unit can be specified in the notes.

The noise level is indicated in decibels; this is a non-linear unit, so it is easiest to evaluate this parameter using comparative tables — they can be found in special sources. Here we note that, according to sanitary standards, the maximum level of constant noise for residential premises is 40 dB during the day and 30 dB at night; for offices, this figure is 50 dB, and in industrial premises higher volume levels may be allowed. So it is worth choosing an air conditioner according to this indicator, taking into account where and how it is planned to use it.

As for specific numbers, among the quietest modern air conditioners, there are models with a minimum performance of 23 – 24 dB, 22 – 21 dB, and sometimes even 20 dB or less. However, units at 31 – 31 dB and 33 – 34 dB are not uncommon; such loudness, usually, does not create discomfort in the daytime, but at night it is no longer desirable. However, in some cases, a louder air conditioner may be the best choice: noise reduction affects the cost, sometimes quite noticeably, an...d if the device is not planned to be turned on at night, you can not overpay for additional noise reduction.

Cooling EER

Cooling factor EER provided by the air conditioner. It is calculated as the ratio of the useful operating power of the air conditioner in cooling mode to the electricity consumption. For example, a device that delivers 6 kW of operating power in cooling mode and consumes 2 kW will have an EER 6/2 = 3.

The higher this indicator, the more economical the air conditioner is and the higher its cooling energy efficiency class (see below). Each class has its clear requirements for EER.

It is worth noting that this indicator is considered not very reliable, and in the European Union another coefficient has been introduced that is closer to practice — SEER. See Energy efficiency SEER (cooling) for more details.
Price graph