Heating area
A very conditional parameter that slightly characterizes the purpose based on the size of the room. And depending on the height of the ceilings, layout, building design and equipment, actual values may differ significantly. However, this item represents the maximum recommended area of the room that the boiler can effectively heat. However, it is worth considering that different buildings have different thermal insulation properties and modern buildings are much “warmer” than 30-year-old and especially 50-year-old houses. Accordingly, this item is more of a reference nature and does not allow us to fully assess the actual heated area. There is a formula by which you can derive the maximum heating area, knowing the useful power of the boiler and the climatic conditions in which it will be used; For more information on this, see "Useful Power". In our case, the heating area is calculated using the formula “boiler power multiplied by 8”, which is approximately equivalent to use in houses that are several decades old.
Heat output
It is the maximum useful power of the boiler.
The ability of the device to heat a room of a particular area directly depends on this parameter; by power, you can approximately determine the heating area, if this parameter is not indicated in the specs. The most general rule says that for a dwelling with a ceiling height of 2.5 – 3 m, at least 100 W of heat power is needed to heat 1 m2 of area. There are also more detailed calculation methods that take into account specific factors: the climatic zone, heat gain from the outside, design features of the heating system, etc.; they are described in detail in special sources. Also note that in dual-circuit boilers (see "Type"), part of the heat generated is used to heat water for the hot water supply; this must be taken into account when evaluating the output power.
It is believed that boilers with a power of more than 30 kW must be installed in separate rooms (boiler rooms).
Power consumption
The maximum electrical power consumed by the boiler during operation. For non-electric models (see Energy source), this power is usually low, as it is required mainly for control circuits and it can be ignored. Regarding electric boilers, it is worth noting that the power consumption in them is most often somewhat higher than the useful one since part of the energy is inevitably dissipated and not used for heating. Accordingly, the ratio of useful and consumed power can be used to evaluate the efficiency of such a boiler.
Coolant min. T
The minimum operating temperature of the heat medium in the boiler system when operating in heating mode.
Coolant max. T
The maximum operating temperature of the heat medium in the boiler system when operating in heating mode.
Control bus
The control bus with which the boiler is compatible.
The control bus is a communication channel through which control and controlled devices can exchange data. Support for such a channel greatly simplifies the connection of thermostats and other control automation. It is enough that such devices are compatible with the same bus as the boiler. In addition, many types of tyres allow you to create very extensive monitoring and control systems and easily integrate various devices into them, including heating boilers.
In modern heating technology, the most popular tyres are
OpenTherm,
eBus,
Bus BridgeNet and
EMS. Here are their key features:
— OpenTherm. A fairly simple standard with modest functionality: it allows only a direct connection between the control and the controlled device and is not designed to create extensive systems. On the other hand, this bus has quite advanced capabilities for controlling heaters: in particular, it allows you to control the temperature not just by turning the boiler on/off, but by changing the power of the gas burner. This mode of operation contributes to saving fuel/energy, as well as reduces wear and increases the life of the heater; and in many cases, a system of two devices (boiler and thermostat) is quite enough for effective heating control. At the same time,
...the OpenTherm standard is simple and inexpensive to implement, which makes it extremely popular in modern boilers. For several reasons, it is mainly used in gas models.
— eBUS. A control bus that has some pretty impressive features. Allows you to combine up to 25 control and 228 controlled devices in one system, with a data transmission distance between individual components up to 1 km. At the same time, eBUS is an open standard, its implementation (at least within the framework of the main functions) is freely available to everyone. And although nowadays eBUS support can be found mainly in Protherm and Vaillant equipment. However, in boilers, this is the second most popular type of control bus, after OpenTherm. It is mainly due to slightly higher cost, while advanced eBUS capabilities are not needed as often.
— Bus BridgeNet. Hotpoint-Ariston proprietary development, used exclusively in boilers of this brand. One of the advantages is a high degree of automation: the user only needs to set the temperature parameters (and for different zones, you can choose custom
options) and, if desired, a weekly programme, the rest of the necessary calculations and adjustments will be carried out by the system. However, such features are available only in special control devices such as temperature controllers; in boilers, Bus BridgeNet support usually means only compatibility with such automation.
— EMS. A control bus used primarily in Bosch and Buderus equipment. In general, it is characterized by wide functionality, a high degree of automation and the ability to create extensive control systems. However, note that nowadays you can find both the original EMS and the modified EMS Plus, and these standards are not initially compatible with each other (although support for both of them may well be provided in some devices). So the specific version of the EMS bus should be specified separately. We note that in Bosch devices there is mainly an original version, and in Buderus devices — EMS Plus (although exceptions are possible there and there).Flue diameter
The diameter of the pipe through which combustion products are discharged from the combustion chamber.
In boilers with a closed combustion chamber often used the coaxial flue, consisting of two pipes nested one inside the other. At the same time, products of combustion are discharged from the combustion chamber through the inner pipe, and the air is supplied through the gap between the inner and outer ones. For such flues, the diameter is usually shown in the form of two numbers — the diameter of the inner and outer pipes, respectively. The most popular values are
60/100,
80/80 and
80/125. Non-coaxial flues can be
100,
110,
125,
130,
140,
150,
160,
180 and
200 mm.
Inlet gas pressure
It is the optimum gas pressure supplied to the inlet of the boiler system. Most often indicated for natural gas and is about 15-20 mbar. This parameter must match the specs of the gas supply system. However, the pressure in the latter may be higher, which may require the installation of a special gas regulator.
Max. gas consumption
Maximum gas consumption in the boiler with the corresponding energy source (see above). Achieved when the gas heater is operating at full capacity; with reduced power and consumption, respectively, will be lower.
Note that boilers of the same power may differ in gas consumption due to the difference in efficiency. While the more fuel-efficient models tend to cost more, the price difference pays off in gas savings.