Dark mode
Укр|Eng|Рус
Ukraine
Catalog   /   TVs & Video   /   Media Players & Set-Top Boxes

Comparison Android TV Box X96 Air 16 Gb vs Android TV Box H96 Max X2 32 Gb

Add to comparison
Android TV Box X96 Air 16 Gb
Android TV Box H96 Max X2 32 Gb
Android TV Box X96 Air 16 GbAndroid TV Box H96 Max X2 32 Gb
from 1 502 ₴
Outdated Product
from 1 599 ₴
Outdated Product
User reviews
0
1
0
0
Main
Support for 8K video at 24 fps
TypeMedia PlayerMedia Player
Operating systemAndroid (AOSP)Android (AOSP)
Connectivity and interfaces
Bluetooth+
Wi-FiWi-Fi 5 (802.11ac)+
AirPlay
Miracast
Card reader
Web browser
IPTV support
Connectors
HDMI11
USB 2.021
USB 3.2 gen111
LAN100 Mbps100 Mbps
AV output
Optical output
Hardware
CPUAmlogic S905X3
CPU cores4
CPU frequency1900 MHz2000 MHz
Built-in memory16 GB32 GB
RAM2 GB4 GB
Ultra HD 4K support
Ultra HD 8K support
HDR supportHDR10
General
Screen
Remote control++
Cooling systempassive (no fan)passive (no fan)
Dimensions (WxHxD)100x18x100 mm
Weight100 g
Added to E-Catalognovember 2019february 2019

Bluetooth

Bluetooth is a technology used to connect various devices wirelessly directly. In media centers and TV receivers, it can be used to broadcast sound to wireless headphones and acoustics, to work with wireless mice and keyboards, to use a smartphone / tablet as a remote control, etc.; specific functionality should be specified separately. Also note that the supported version of Bluetooth can be specified here. The newest and most advanced is Bluetooth 5.0, but here is a more detailed description of the different versions:
  • Bluetooth v4.0. The version in which the "Bluetooth Low Energy" (LE) format was first introduced — in addition to regular Bluetooth (version 2.1 functionality) and the high-speed HE standard for transferring large amounts of information (introduced in version 3.0). Bluetooth LE allows you to significantly reduce power consumption when transmitting small data packets, such as request-responses about connection activity in idle mode. For the media centers and TV receivers themselves, this is not particularly important, but for portable equipment (especially miniature ones, where battery capacity is very limited), such functionality will be useful.
  • Bluetooth v 4.1. Development and improvement of Bluetooth 4.0. One of the key improvements was the optimization of collaboration with 4G LTE communication modules so that Bluetooth and LTE do not interfere with each other. In addition, t...his version has the ability to simultaneously use a Bluetooth device in several roles — for example, to remotely control an external device while simultaneously streaming music to headphones.
  • Bluetooth v4.2. Further, after 4.1, the development of the Bluetooth standard. It did not introduce fundamental updates, but received a number of improvements regarding reliability and noise immunity, as well as improved compatibility with the Internet of Things.
  • Bluetooth v5.0. Version introduced in 2016. One of the most notable updates was the introduction of two new modes of operation for Bluetooth LE — with an increase in speed by reducing the range and with an increase in range by reducing the speed. In addition, a number of improvements have been introduced regarding simultaneous work with numerous connected devices, as well as work with the components of the Internet of Things.

Wi-Fi

Wi-Fi is a technology used for wireless connection to computer networks and for direct connection between devices. In media players, tuners and video capture devices, it can be used both to access the Internet or "local area" through a wireless router, and to communicate with a smartphone, tablet, etc. The AirPlay, Chromecast and Miracast functions are also based on this technology. The specific set of Wi-Fi features should be clarified separately; here we note that in this paragraph the specific supported version of such a connection can also be specified. Here are the main current options:
  • Wi-Fi 5(802.11ac). One of the newest (for 2020) standards. Uses the 5 GHz band (less crowded than used in earlier 2.4 GHz versions) for improved reliability and lower latency; and speeds can reach 6.77 Gbps with multiple antennas and 1.69 Gbps with a single antenna.
  • Wi-Fi 4 (802.11n). The predecessor of the above Wi-Fi 5, the first standard in which the 5 GHz band was introduced — here it is used along with the traditional 2.4 GHz and is not supported by some devices with Wi-Fi 4. Data transfer rate — up to 600 Mbps.
Note that, in addition to the directly claimed Wi-Fi standard, the media centre, digital receivers and video capture devices usually provide support for earlier versions — for maximum compatibility with different devices.

AirPlay

The technology of broadcasting audio and video signals through a Wi-Fi connection. Widely used in Apple electronics, the media centre with AirPlay will make it easy to duplicate a “picture” on a TV, for example, from an iPhone or iPad. The main disadvantage of this technology compared to similar Miracast is the need for a local network with a wireless router.

Miracast

A wireless technology that allows you to directly broadcast video and audio from one device to another directly over a Wi-Fi connection. At the same time, unlike AirPlay, transmission does not require a router and building a local network — it is enough that the receiver and transmitter are compatible with Miracast. One of the most popular ways to use this technology is to output a “picture” from a smartphone / tablet screen to a TV, and vice versa. A media centre or TV receiver with Miracast is useful if the TV itself does not support this function.

Optical output

A variation of the SP/DIF audio interface that uses a TOSLINK fibre optic cable. Like the coaxial connector, the optical output uses a digital data transfer format and can work with multi-channel audio. At the same time, optical fibre requires rather delicate handling, but it is absolutely insensitive to electrical interference.

CPU

The model of the CPU installed in the media player.

This information is mainly of reference value: the processor is selected in such a way as to provide certain practical characteristics (maximum resolution, support for certain standards, embedded applications, etc.). So when choosing, you should focus primarily on these specifications. However, if you wish, knowing the processor model, you can find detailed data on it and evaluate the capabilities of the media centre to work with resource-consuming applications. This can be useful, in particular, if you choose an Android model (see above) and plan to use additional software intensively — the set of applications for this OS is very extensive, and some of them are quite demanding on system resources.

Also note that CPU data is often specified for advertising purposes — to emphasize that the device has a fairly advanced chip from a well-known brand. Among the most common brands of such processors are Allwinner, Amlogic, Rockchip, Realtek.

CPU cores

The core is the part of the processor that executes a single thread of instructions. Accordingly, the presence of multiple cores allows to work with multiple threads simultaneously, which has a positive effect on performance. Theoretically, more cores (4 cores or even 6 cores or more) can increase the efficiency of the processor. However, in fact, CPU performance depends on so many additional factors that the number of cores is purely a reference parameter. So, a high-end dual-core processor may well be more performant than an inexpensive quad-core one.

CPU frequency

The clock speed of the CPU installed in the media centre.

On the technical side, the higher this indicator, the faster the processor works and the higher, accordingly, the overall system performance. At the same time, the CPU performance depends, in addition to the frequency itself, on a number of factors — architecture, number of cores, special design features, etc.; and the actual speed of the entire system is affected by performance of components other than the processor. In addition, manufacturers usually select processors in such a way that their computing power is guaranteed to be enough for all the features claimed for a media centre. Therefore, in this case, the CPU frequency is more of a reference parameter (and partly an advertising indicator that demonstrates the advanced specifications of the device), rather than practically significant for buyer.

Built-in memory

The volume ofits own storage installed in the media player.

In this case, storage means permanent memory available to the user — the storage that you can fill with movies, music, applications, etc. The larger the volume of such storage, the more convenient it is for the user; on the other hand, this parameter significantly affects the cost of the entire device. In addition, it should noted that external media are also quite suitable for films and other multimedia content — flash drives, portable HDDs, drives installed in a slot (see below), optical discs, etc. So specifically look for a model with a capacious storage makes sense in two main cases. The first is if you want to keep an extensive collection of content in the media player, so as not to bother once again with connecting flash drives, loading disks, etc. it is best to put it in the built-in memory, and often this is the only possible option).

As for specific volumes, the capacity up to 4 GB is considered very limited nowadays; such a storage is not enough even for a movie in HD 720p, its purpose is mainly to store a small set of applications. 8 GB and 16 GB are also relatively small, but this already allows you to work with a fairly extensive set of software and store individual movies in HD resolutions. And if you initially intend to store a large...amount of content on the device, you should definitely pay attention to models with a capacity of 32 GB or more.
Price graph
Android TV Box X96 Air 16 Gb often compared
Android TV Box H96 Max X2 32 Gb often compared