Dark mode
Укр|Eng|Рус
Ukraine
Catalog   /   Computing   /   Components   /   PSUs

Comparison Chieftec Proton BDF-600S vs Chieftec ECO GPE-600S

Add to comparison
Chieftec Proton BDF-600S
Chieftec ECO GPE-600S
Chieftec Proton BDF-600SChieftec ECO GPE-600S
Compare prices 69Compare prices 65
User reviews
TOP sellers
Main
Full set of protections. Quiet cooling system. High power main line.
Power600 W600 W
Form factorATXATX
Specs
PFCactiveactive
Efficiency85 %85 %
Cooling system1 fan1 fan
Fan size120 mm120 mm
Fan bearingsliding
Certification80+ Bronzewithout 80+
ATX12V version2.32.3
Power connectors
MB/CPU power supply24+8 (4+4) pin24+8 (4+4) pin
SATA66
MOLEX22
PCI-E 8pin (6+2)22
Cable systemnon-modularnon-modular
Braided wires
Cable length
MB450 mm450 mm
CPU550 mm550 mm
SATA400 mm350 mm
MOLEX400 mm350 mm
PCI-E450 mm450 mm
Max. power
+3.3V18 A22 A
+5V18 A22 A
+12V150 A45 A
-12V0.3 A0.3 A
+5Vsb2.5 A2.5 A
+12V600 W550 W
+3.3V +5V103 W120 W
-12V3.6 W3.6 W
+5Vsb12.5 W12.5 W
General
Over voltage protection (OVP)
Over power protection (OPP)
Short circuit protection (SCP)
ProtectionSIP, UVP, OCP, OTP, AFCSIP, UVP
Manufacturer's warranty2 years2 years
Dimensions (HxWxD)87x150x140 mm86x150x140 mm
Weight1.6 kg
Added to E-Catalogoctober 2017july 2016

Fan bearing

The bearing is the piece between the rotating axle of the fan and the fixed base that supports the axle and reduces friction. The following types of bearings are found in modern fans:

— Sliding. The action of these bearings is based on direct contact between two solid surfaces, carefully polished to reduce friction. Such devices are simple, reliable and durable, but their efficiency is quite low — rolling, and even more so the hydrodynamic and magnetic principle of operation, provide much less friction.

— Rolling. They are also called "ball bearings", since the "mediators" between the axis of rotation and the fixed base are balls (less often — cylindrical rollers) fixed in a special ring. When the axis rotates, such balls roll between it and the base, due to which the friction force is very low — noticeably lower than in plain bearings. On the other hand, the design turns out to be more expensive and complex, and in terms of reliability it is somewhat inferior to both the same plain bearings and more advanced hydrodynamic devices. Therefore, although rolling bearings are quite widespread nowadays, however, in general, they are much less common than the mentioned varieties.

— Hydrodynamic. Bearings of this type are filled with a special liquid; when rotated, it creates a layer on which the moving part of the bearing slides. In this way, direct contact between hard surfaces is avoided and friction is significantly reduced compared to previous...types. Also, these bearings are quiet and very reliable. Of their shortcomings, a relatively high cost can be noted, but in fact this moment often turns out to be invisible against the background of the price of the entire system. Therefore, this option is extremely popular nowadays, it can be found in cooling systems of all levels — from low-cost to advanced.

— Magnetic centering. Bearings based on the principle of magnetic levitation: the rotating axis is "suspended" in a magnetic field. Thus, it is possible (as in hydrodynamic ones) to avoid contact between solid surfaces and further reduce friction. Considered the most advanced type of bearings, they are reliable and quiet, but expensive.

Certification

The presence or absence of an 80+ certificate for the power supply. This certificate indicates high energy efficiency: to obtain it, the efficiency (see above) must be at least 80%, and in different modes (20%, 50% and 100% of the maximum load). There are several degrees of 80+:

80+. The original version of the certificate, assuming an efficiency of at least 82% (at least 85% for 50% load).

80+ White. The second name of the original 80+ certificate (see above).

80+ Bronze — efficiency not less than 85% (for half load — 88%).

80+ Silver — respectively 87% (90% for half load).

80+ Gold — 89% (92% for half load)

80+ Platinum — 90% (94% for half load).

80+ Titanium — 94% (96% for half load).

The power factor (see "PFC Type") must be at least 0.9 for the lower levels and at least 0.95 for the Platinum level. Also note that for redundant power used in server systems, the efficiency requirements are somewhat lower.

Braided wires

The presence of a braid in the complete wires of the system unit — for all or at least for some.

This feature has a positive effect on reliability, making the wire as resistant as possible to bending, abrasion, strong pressure and other similar influences; it also provides additional protection against accidental contact with sharp objects (for example, when repairing a PC). The disadvantages of braided wires, in addition to increased cost, are also increased thickness and greater rigidity than similar cables in conventional insulation. This can create some difficulties in organizing space inside the system unit.

+3.3V

The maximum values of current and power that the PSU can provide on individual power lines.

The power line can be simply described as a pair of contacts for connecting a particular load; one of these contacts is “ground” (with zero voltage), and the second has a certain voltage with a plus or minus sign, this voltage corresponds to the voltage of the power line. In this paragraph, it is + 3.3V (such power is present in 20- and 24-pin connectors for motherboards, in SATA power connectors and some other types of connectors).

In general, power and currents are rather specific parameters that the average user rarely needs — mainly when connecting high-power components such as video cards, as well as when starting a PSU without a computer to power other electronics (for example, amateur radio stations). It is also worth mentioning that the sum of the maximum powers on all lines can be higher than the total output power of the PSU — this means that all lines cannot operate at full power at the same time. Accordingly, when the PSU is fully loaded, some of them will produce less power than the maximum possible.

+5V

The maximum current that the PSU is capable of issuing + 5V to the power line. For more information about power lines in general, see "+3.3V". Also note here that + 5V power, in addition to connectors for motherboards (for 20 and 24 pins), is also found in Molex and SATA plugs, as well as some other specific types of connectors.

+12V1

The maximum current that the PSU is capable of delivering to the first power line is + 12V.

For more information about power lines in general, see "+3.3V". Here it is worth mentioning that 12 V is the most popular voltage among computer power connectors. It is used in almost all such connectors (with a few exceptions), and some plugs (for example, additional PCI-E power for 6 or 8 connectors) use only 12-volt lines — and in the + 12V format. And the division of + 12V power into several separate lines is used for safety purposes — in order to reduce the current flowing through each individual wire, and thus prevent excessive load and overheating of the wiring. However, some manufacturers do not specify the maximum current for individual + 12V lines and give only a general value in the characteristics; in such cases, this number is indicated in this paragraph.

+12V

The maximum power that the PSU is capable of delivering to the + 12V power line.

See "Maximum current and power" for details on power lines in general. Here it is worth mentioning that 12 V is the most popular voltage among computer power connectors. It is used in almost all such connectors (with a few exceptions), and some plugs (for example, additional PCI-E power for 6 or 8 connectors) use only 12-volt lines — and in the + 12V format. So this indicator is one of the most important characteristics of any PSU.

Note that many power supplies have several separate + 12V power lines. In such cases, the total power is indicated here, which, usually, is divided equally between the lines.

+3.3V +5V

The maximum power that the PSU is capable of delivering on the + 3.3V and + 5V power lines.

See "Maximum current and power" for details on power lines in general. Here we note that the power lines + 3.3V and + 5V are used both in the general connector for the motherboard (for 20 or 24 pins), and in specialized plugs — in particular, the SATA power connector (both) and Molex (only +5V, in addition to +12V). The power of these lines is a rather specific parameter, rarely required in fact; it is usually the same for both voltages, so it is indicated in the general clause.

Protection

Protection circuits provided in the power supply. In addition to the OVP (overvoltage protection), OPP (overcurrent/power protection), and SCP (short circuit protection) described above, modern PSUs may include the following safety features:

— O.C.P. Overload protection on individual power outputs. It differs from OPP in that it takes into account not the total current consumption, but the current at each output separately.

— UVP. Undervoltage protection at the output of the power supply. For some components, such a voltage is as undesirable as an increased voltage: for example, a hard drive at reduced power cannot spin the plates to the required speeds. Usually, UVP is activated when the voltage drops by 20 – 25%.

— OTP. Protection against overheating of individual components of the power supply.

— SIP. Protection against voltage surges and surges is, in fact, a built-in stabilizer that can smooth out these surges to a certain extent. This feature does not eliminate the need for an external stabilizer, but it improves the overall performance of the protection.

— A.F.C. Not so much a protective as an “energy saving” function: automatic fan speed control, which allows you to change the speed depending on the load and the actual heat dissipation of the PSU. In addition to saving energy, this adjustment also reduces wear on the moving parts of the cooler.

— C.E. Power supply complies with European Union dire...ctives for energy efficiency and safety.

— CB. Power supply complies with IEC (International Electrotechnical Commission) directives regarding the safety of electrical equipment and components.

— FCC. Power supply complies with FCC (Federal Communications Commission) directives, especially regarding electromagnetic interference.

— CCC. Compliance of the power supply with the requirements necessary for official certification in the Chinese market (PRC).

— K.C. Compliance of the power supply with the requirements necessary for official certification in the South Korean market.

— BSMI. Compliance of the power supply with the requirements required for official certification in the Taiwan market.

— RCM. Power supply meets the requirements for official certification in the Australian and New Zealand market. RCM requirements are primarily concerned with safe use and electromagnetic compatibility.

— TUV-RH. Power supply meets the criteria for certification by TÜV Rheinland Group, one of the world's largest and most respected auditing and certification companies. Most often, we are talking about the TÜV-Mark Approval certificate, which indicates that the individual parts of the device (body, boards, parts, switches, etc.) comply with the requirements for safe use.

— cTUVus. Another certification held by the above mentioned TÜV Rheinland Group. In this case, we are talking about the compliance of the power supply with the technical requirements necessary for admission to the markets of the USA and Canada. The cTUVus certificate has the same legal validity as certificates issued directly by the authorities in those countries.

— EAC. Compliance of the power supply with the technical requirements of the Eurasian Economic Union (former Customs Union).
Price graph
Chieftec Proton often compared
Chieftec ECO often compared