Dark mode
Укр|Eng|Рус
Ukraine
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Powerbank

Comparison Power Plant PB-930142 vs InterStep PST150PD

Add to comparison
Power Plant PB-930142
InterStep PST150PD
Power Plant PB-930142InterStep PST150PD
from 9 499 ₴
Outdated Product
from 5 000 ₴
Outdated Product
User reviews
0
0
0
1
2
0
0
1
Main
Built-in 150W multi-socket (EU, US, UK). Possibility of power supply from a power bank for pumps, low-power portable refrigerators, TVs with a diagonal of up to 32 ", etc. Carrying handle. Powerful flashlight (5 W). Built-in active cooling.
Charging time: 45W — 7 hours, 18W — 18 hours, 10W — 30 hours. Charger not included. When charging multiple devices, fast charging mode is disabled.
Battery capacity30000 mAh40000 mAh
Real capacity25200 mAh
Battery typeLi-PolLi-Pol
Charging gadgets (outputs)
USB type C11
USB-A22
Max. power (per 1 port)60 W45 W
Power output (all ports)78 W
Power bank charging
Power bank charging inputs
USB type C
DC input
USB type C
DC input
Power bank charge current via USB3 A3 A
DC power bank charge current2 A
Power bank charge power45 W
Full charge time3.5 h7 h
Features
Fast charge
Quick Charge 3.0
Power Delivery
 
Quick Charge 3.0
Power Delivery
Samsung Adaptive Fast Charging
Laptop charging port (DC)
Bundled cables (adapters)
microUSB
USB type C
10 laptop adapters, DC-DC cable
 
USB type C
 
Features
info display
 
 
flashlight
General
Body materialplasticplastic
Dimensions184x119x27 mm
Weight780 g1700 g
Color
Added to E-Catalogdecember 2019july 2019

Battery capacity

The higher the battery capacity, the more energy the power bank is able to accumulate and then transfer when charging to gadgets connected to it. But it should be borne in mind that not all of the accumulated energy goes specifically to charging – part of it is spent on service functions and inevitable losses in the process of transmission. So in the specifications, the real capacity of the power bank is also often specified. If there is no data on real capacity, then when calculating it is worth proceeding from the fact that it is usually somewhere 1.6 times lower than the nominal one. For example, for a model with a nominal capacity of 10,000 mAh, the actual value will be approximately 6300 mAh.

As for the specific values of the nominal capacity, then in models with the lowest performance it is 5000 – 7000 mAh and even less ; such power banks are suitable as a backup source of energy for 1 – 2 smartphone charging with a not very capacious battery or other similar gadget. The 10,000 mAh solutions are the most popular nowadays – in many cases, this option provides the best price-capacity ratio. The 20,000 mAh and 30,000 mAh options are also very common. But even a capacity of 40,000 mAh or more, thanks to the...development of modern technology, is quite common.

Real capacity

The real capacity of the power bank.

Real capacity is the amount of energy that a power bank is able to transfer to rechargeable gadgets. This amount is inevitably lower than the nominal capacity (see above) — most often by about 1.6 times (due to the fact that part of the energy goes to additional features and transmission losses). However, it is by real capacity that it is easiest to evaluate the actual capabilities of an external battery: for example, if this figure is 6500 mAh, this model is guaranteed to be enough for two full charges of a smartphone with a 3000 mAh battery and smartwatches for 250 mAh.

The capacity in this case is indicated for 5 V — the standard USB charging voltage. At the same time, the features of milliamp-hours as a unit of capacity are such that the actual amount of energy in the battery depends not only on the number of mAh, but also on the operating voltage. In fact, this means that when using fast charging technologies (see below) that involve increased voltage, the actual value of the actual capacity will differ from the claimed one (it will be lower). There are formulas and methods for calculating this value, they can be found in special sources.

Max. power (per 1 port)

The maximum power that the power bank, theoretically, is capable of delivering to one rechargeable device. Usually, this power is achieved under the condition that no other device is connected to the battery (although exceptions to this rule are possible). And if you have ports with different charging currents or support multiple fast charging technologies, this information is given for the most powerful output or technology.

For modern power banks, a power of 10 watts or less is considered quite low; among other things, it usually means that the device does not support fast charging. Nevertheless, such devices are inexpensive and often turn out to be quite sufficient for simple tasks; Therefore, there are many models with similar specs on the market. The power of 12 – 15 W is also relatively small, 18 W can be called the average level, 20 – 25 W and 30 – 50 W is already considered an advanced level and in some solutions this parameter may exceed 60 W.

In general, higher power output has a positive effect on charging speed, but in fact there are a number of nuances associated with this parameter. Firstly, not only the power bank, but also the gadget being charged should support the appropriate power — otherwise the speed of the proces...s will be limited by the specs of the gadget. Secondly, in order to use the full capabilities of the power bank, it may be necessary for it to be compatible with certain fast charging technologies (see "Fast Charging").

Power output (all ports)

The total charge power provided by the power bank on all connectors overnight - when devices are connected simultaneously to all charging ports.

This parameter is given due to the fact that the total charge power does not always correspond to the sum of the maximum powers of all available ports. The built-in battery of a power bank often has its own limitation on the output power. Therefore, for example, in a model with two 18 W USB ports, each total charge power can be the same 18 W. Note that the distribution of power among the connectors may be different: in some models it is divided equally, in others it is divided in proportion to the maximum current strength (if it differs on different ports). These nuances should be clarified using the detailed characteristics of the charging connectors.

If you plan to regularly use all power bank connectors at once, you should pay attention to this indicator.

DC power bank charge current

Nominal charge current supported by the power bank when charging its own battery via the DC connector (see "Battery Charging Inputs").

Models with DC charging inputs are usually equipped with chargers that most often have a current of this indicator. Therefore, you have to pay attention to the amperes indicated for the DC input, mainly when looking for a third-party charger for this connector. And here it is worth proceeding from the fact that the current issued by this charger should perfectly correspond to the charge current of the power bank itself. It is quite possible that the output current of the charger is lower than the nominal one — unless the charge time increases accordingly. But it is undesirable to connect a power bank to an overly powerful energy source: it is not a fact that the built-in controller can effectively reduce the current to the nominal value and prevent battery overload.

Power bank charge power

The power in watts at which the power bank is charged under normal conditions.

The higher the charging power, the less time it takes to charge (given the same battery capacity). For example, fast charging of a power bank typically means a charging power of 30W or more. However, this parameter does not directly affect compatibility with charging devices: modern portable batteries can work with chargers of both higher and lower power. In the first case, the battery controller will automatically limit the charging current, while in the second case, charging will simply take more time.

Full charge time

The time required to fully charge a battery discharged “to zero”. Features of the charging process in different models may be different, respectively, and the time required for this may differ markedly even with the same capacity.

Fast-charging batteries tend to be more expensive. Therefore, choosing this option makes sense if you do not have much time to replenish your energy supply — for example, for hiking. However, keep in mind that charging at full speed may require a charger that supports certain fast charging technologies (see below).

It must also be said that in most modern batteries, the charging speed is uneven — it is highest at the several first percent from zero, then gradually decreases. Therefore, the time required to replenish the energy supply by a certain percentage will not be strictly proportional to the total claimed charge time; moreover, this time will depend on how much the battery is already charged at the time the procedure starts. For example, charging from 0 to 50% will take less time than from 50 to 100%, although both there and there we are talking about half the capacity.

Fast charge

Fast charging technologies supported by the power bank. This is primarily about charging external gadgets, but the same technology can also be used when replenishing the power bank itself.

The fast charging feature, hence the name, can significantly reduce the time spent on the procedure. This is achieved through increased current and/or voltage, as well as smart process control (at each stage, the current and voltage correspond to the optimal parameters).

Fast charging is especially important for devices with high-capacity batteries that take a long time to charge normally. However, to fully use this feature, the power source and the gadget being charged must support the same charging technology; at the same time, different technologies are not compatible with each other, although occasionally there are exceptions. The most popular fast charging formats these days are QuickCharge (versions 3.0, 4.0 and 4.0+), Power Delivery (Power Delivery 3.0 and Power Delivery 3.1), Pump Express, Samsung Adaptive Fast Charging, Huawei Fast Charge Protocol, Huawei SuperCharge Protocol, OPPO VOOC, OnePlus Dash Charge ; Here are the specific features of these, as well as some other options:

— Quick Charge (1.0, 2.0, 3.0, 4.0, 5.0). Technology created by Qualcomm and used in gadgets with Qualcomm CPUs. The later the version, the more advanced the technology: for example, Quick Charge 2.0 has 3 fixed voltage options, and version 3.0 has a smooth adjustment in the range from 3.6 to 20 V. Most often, gadgets with a newer version of Quick Charge are also compatible with older devices for charging, but for full use, an exact match in versions is desirable.
Also note that certain versions of Quick Charge have become the basis for some other technologies. However, again, the mutual compatibility of chargers/power banks and gadgets supporting these technologies needs to be clarified separately.

— Pump Express. Own development of MediaTek, used in portable devices with CPUs of this brand. Also available in several versions, with improvements and additions as it develops.

— Power delivery. Native fast charging technology for the USB type C connector. Used by many brands, found mainly in chargers (including power banks) and gadgets using this type of connector. Presented in several versions.

— Samsung Adaptive Fast Charging. Samsung's proprietary fast charging technology. It has been used without any changes since 2015, in light of which it looks quite modest compared to newer standards. Nevertheless, it is able to provide good speed, especially in the first 50% of the charge.

— Huawei FastCharge Protocol. One of Huawei's proprietary technologies. Formally similar to Quick Charge 2.0, but used with both Qualcomm and other brands of mobile processors, so compatibility is not guaranteed. In general, it is considered obsolete, gradually being replaced by more advanced standards like the SuperCharge Protocol.

— Huawei SuperCharge Protocol. Another proprietary technology from Huawei introduced in 2016; for 2021 is available in several versions. In some devices, the power of such charging exceeds 60 V — not a record, but quite an indicator.

— Oppo VOOC. OPPO technology, used both in branded smartphones and in equipment from other brands. Available in several versions; The latest (for 2021) version of SuperVOOC is for 2-cell batteries and is sometimes listed as a separate technology called Oppo SuperVOOC Flash Charge.

— OnePlus Dash Charge. A relatively old proprietary standard from OnePlus. An interesting feature is that in some gadgets, the effectiveness of Dash Charge is practically independent of the use of the screen: when the display is on, the battery charges at almost the same rate as when it is off. Technically a licensed version of OPPO's VOOC, however, these technologies are not compatible. Since 2018, Dash Charge has been phased out by Warp Charge, but this newer technology is still rare in separately sold chargers and power banks.

— PowerIQ. Technology developed by the Anker brand. The key feature of PowerIQ is that it is not a standalone standard, but a combined format of operation that combines a wide range of popular fast charging formats. In particular, version 3.0 claims the ability to work with Quick Charge, Power Delivery, Apple Fast Charging, Samsung Adaptive Fast Charging and others.

Bundled cables (adapters)

Types of cables and/or adapters for charging external devices included in the power bank set.

The type of such cables is indicated by the plug used to connect to the gadget being charged; connection with the power bank itself is usually carried out through a standard USB A or USB type C output. We emphasize that in this case, we are talking about detachable cables/adapters; types of built-in charging cables are specified separately (if any — see below).

In general, this parameter allows you to evaluate the possibilities of a power bank available out of the box, without purchasing additional accessories. As for specific interfaces, most often external batteries nowadays are equipped with microUSB, USB type C and/or Lightning cables/adapters; more specific connectors are extremely rare. Here are the features of the most popular options:

— microUSB. A connector that is extremely common in modern portable gadgets. It is inferior to the newer USB type-C in terms of convenience and several performance specs, but still has not lost popularity.

— USB type C. A relatively new standard for miniature USB connectors, used for charging both portable equipment and larger devices — in particular, some ultra-compact laptops. Physically, it differs from microUSB in a slightly larger size and a two-sided design that allows you to connect t...he plug both ways. In terms of performance, USB type C is notable for better compatibility with fast charging technologies (see above): more fast charging technologies can be used with it, and Power Delivery was created based on this connector. At the same time, the presence of a USB type C cable does not mean support for fast charging.

— Lightning. Standard original connector for Apple gadgets; other manufacturers do not have such a port.

Note that if several types of bundled cables/adapters are claimed in the specs, the specific format of such accessories may be different. For example, "microUSB plus USB type C" could mean two separate cables, one cable with two plugs, a cable with one plug plus an adapter to another, etc.
Power Plant PB-930142 often compared
InterStep PST150PD often compared