Dark mode
Укр|Eng|Рус
Ukraine
Catalog   /   Computing   /   Gaming & Entertainment   /   VR Headsets

Comparison Oculus Go 64 Gb vs Xiaomi Mi VR Play 2

Add to comparison
Oculus Go 64 Gb
Xiaomi Mi VR Play 2
Oculus Go 64 GbXiaomi Mi VR Play 2
from 14 632 ₴
Outdated Product
from 465 ₴
Outdated Product
User reviews
0
0
0
1
Main
Oculus Go is a standalone VR headset that does not require connection to a computer or smartphone. Controller included. Spatial Sound Technology. 3D location tracking.
Mi VR Standalone and Oculus Go devices have the same specifications, the difference is that Mi VR Standalone will be presented exclusively in China.
Ergonomic design. Support for most smartphones regardless of OS.
Compatibilityindependent devicefor smartphone
Specs
Max. phone screen size5.7 "
Screen resolution2560x1440 px
Field of view100 °
Built-in memory64 GB
RAM3 GB
CPUSnapdragon 821
Refresh rate60 fps
Accelerometer
Gyroscope
Lens distance adjusting
Pupillary distance adjustment
Multimedia
Bluetoothv 4.0
Wi-FiWi-Fi 5 (802.11ac)
Headphones
Headphone output
General
Magnetic button
Controller
Battery capacity2600 mAh
Materialplasticfabric
Dimensions (HxWxD)105x190x115 mm102x191x129 mm
Weight468 g183 g
Added to E-Catalogmay 2019july 2017

Compatibility

The general purpose of the glasses is specified based on which device they are to be used with:

For PC/Console. Glasses connected during operation to an external device and receiving a video signal from this device. Most often, it is supposed to be connected to a computer or game console, but there are models that can be connected to mobile gadgets, drones, etc. In general, they provide a good compromise between accessibility and functionality, and besides, quite advanced graphics can be displayed on such glasses. On the other hand, for the full use of such models, powerful video cards are often required.

For a smartphone. Models designed to turn a smartphone into a virtual reality device. To do this, the smartphone is installed in a special slot on the glasses so that its screen is turned towards the user's eyes; glasses themselves do not have screens. And the effect of virtual reality is achieved through the operation of smartphone sensors and (accelerometer, gyroscope) and the use of special applications created specifically for this format of work. The key advantage of glasses of this type is simplicity and low cost: most often these are purely mechanical devices, without built-in electronics (and even advanced models with additional hardware are much cheaper than other types of glasses). On the other hand, the quality of virtual reality directly depends on the capabili...ties of the smartphone, despite the fact that not all devices correctly process such content. In addition, the glasses must be compatible with the smartphone being used, and this is not always guaranteed (for more details, see “Maximum phone size”).

For quadcopter (FPV goggles). Video glasses used to control drones and radio-controlled unmanned aerial vehicles (UAVs) to provide a first-person view. FPV goggles allow pilots to receive a video feed from a UAV camera in real time. To do this, the design of such glasses provides two separate miniature screens for each eye and complex optics to provide binocular vision. Lenses often have adjustable focal length to suit the visual apparatus and the varying needs of the pilot. Many FPV goggles are equipped with a built-in receiver and antennas to receive signals from the video camera on board the UAV, as well as control the quadcopter. FPV systems are actively used in the segment of racing drones, aerial photography, and even in combat operations. Glasses with a first-person view provide the pilot with a more complete perception of the surrounding environment and improve the controllability of the aircraft.

Standalone device. Points that function completely autonomously and do not require the use of external devices. To do this, the design provides for its own processor, "RAM", video adapter, drive for storing content and a battery for power. Thus, with such a gadget, virtual reality becomes available literally anywhere in the world; and at a cost, such glasses are comparable to models for PC / consoles. On the other hand, the capabilities of stand-alone devices are noticeably more modest: the relatively low power of video adapters does not allow for the same advanced graphics as on PCs or consoles, the amount of internal memory is usually small, and the continuous operation time is limited by battery charge.

For quadcopter (FPV glasses). Video glasses used to control drones and radio-controlled unmanned aerial vehicles (UAVs) to provide a first-person view. FPV goggles allow pilots to receive a video feed from a UAV camera in real time. To do this, the design of such glasses provides two separate miniature screens for each eye and complex optics to provide binocular vision. Lenses often have adjustable focal length to suit the visual apparatus and the varying needs of the pilot. Many FPV goggles are equipped with a built-in receiver and antennas to receive signals from the video camera on board the UAV, as well as control the quadcopter. FPV systems are actively used in the segment of racing drones, aerial photography, and even in combat operations. Glasses with a first-person view provide the pilot with a more complete perception of the surrounding environment and improve the controllability of the aircraft.

Max. phone screen size

The largest diagonal of a smartphone compatible with the corresponding glasses (see "Intended use"). Note that this parameter can be specified both for universal models that do not have specialization for specific mobile phones, and for gadgets for specific devices (for more details, see "Compatible phone models"). The maximum diagonal is connected both with the features of the optics and with the physical dimensions of the "seat" for a mobile phone — a gadget that is too large simply does not fit there.

Note that even the smallest glasses for smartphones work quite correctly with devices with a diagonal of 5 – 5.5 ". So it makes sense to pay attention to this parameter if your device has a larger screen size. Nowadays, you can find glasses for gadgets 5.6 – 6 " and even 6" or more.

Screen resolution

Resolution of built-in displays in glasses equipped with such equipment — that is, models for PC / consoles, as well as standalone devices (see "Intended use").

The higher the resolution, the more smooth and detailed the “picture” is given out by glasses, all other things being equal. Thanks to the development of technology nowadays, models with Full HD (1920x1080) screens and even higher resolutions are not uncommon. On the other hand, this parameter significantly affects the cost of points. In addition, it is worth remembering that in order to fully work with high-resolution displays, you need powerful graphics capable of playing relevant content. In the case of glasses for PCs and set-top boxes, this puts forward corresponding requirements for external devices, and in standalone models you have to use advanced integrated video adapters (which affects the cost even more).

Field of view

The viewing angle provided by virtual reality glasses is the angular size of the space that falls into the user's field of view. Usually, the characteristics indicate the size of this space horizontally; however, if you need the most accurate information, this point needs to be specified separately.

The wider the viewing angle — the more the game space the user can see without turning his head, the more powerful the immersion effect and the less likely that the image will be subject to the "tunnel vision" effect. On the other hand, making the field of view too wide also does not make sense, given the characteristics of the human eye. In general, a large viewing angle is considered to be an angle of 100° or more. On the other hand, there are models where this indicator is 30° or even less — these are, usually, specific devices (for example, drone piloting glasses and augmented reality glasses), where such characteristics are quite justified given the overall functionality.

Built-in memory

The amount of built-in storage installed in glasses.

Only independent devices are equipped with such a drive (see "Intended use") — it is used to store software firmware, as well as various additional content (applications, panoramic films, etc.). The larger the storage capacity, the more such content can be stored on the device; on the other hand, this characteristic directly affects the price. It is also worth considering that some models allow you to supplement the built-in storage with a memory card (for more details, see "Cart Reader").

For modern virtual reality glasses, the most modest volume is 16 GB — it is technically impractical to install smaller drives. In advanced models, this figure can reach 128 GB.

RAM

The amount of random access memory (RAM) installed in glasses.

This parameter is relevant only for independent devices (see "Intended use"). Theoretically, the more RAM in the gadget, the higher its power, the faster it is able to work and the better it handles with “heavy” tasks. However, in fact, this characteristic has more reference than practical value. Firstly, the capabilities of standalone glasses are also highly dependent on the processor and video adapter used. Secondly, the amount of memory is selected in such a way that the glasses are guaranteed to be able to cope with the tasks for which they were originally intended. Actually, problems can only arise with the launch of very demanding applications or resource-intensive video (for example, 4K panoramic videos); so paying attention to the amount of RAM makes sense only if you plan to use glasses for such purposes.

As for specific volumes, they in modern devices range from 2 to 4 GB.

CPU

The model of the processor installed in the glasses.

This information is indicated mainly for stand-alone devices (see "Intended use") — it is in them that the capabilities of the glasses as a whole directly depend on the processor model. And knowing the name of the chip, you can find detailed data on it and evaluate its effectiveness. At the same time, in fact, such a need arises extremely rarely: manufacturers choose processors in such a way that glasses can be used for their main purpose without any problems. So when choosing, you should pay attention to more practical parameters — display resolution, refresh rate, etc.

Refresh rate

The refresh rate supported by the glasses' built-in screens, in simple terms, is the maximum frame rate that the screens are capable of delivering.

Recall that screens are provided in models for PC / consoles and in stand-alone devices (see "Intended use"). And the quality of the picture directly depends on this indicator: other things being equal, a higher frame rate provides a smoother image, without jerks and with good detail in dynamic scenes. The flip side of these benefits is an increase in price.

It is also worth considering that in some cases the actual frame rate will not be limited by the capabilities of the glasses, but by the characteristics of the external device or the properties of the content being played. For example, a relatively weak PC graphics card may not be able to pull out a high frame rate signal, or a certain frame rate may be set in the game and not provide boosting. Therefore, you should not chase after large values and points with a frequency of 90 fps will be enough.

Accelerometer

Presence in points of own built — in accelerometer.

The accelerometer is a sensor that records the accelerations that the device is subjected to. It performs two main functions: determines the position of the glasses relative to the horizon (in the direction of gravity) and monitors jerks and tremors (however, this function is secondary in VR glasses). Such a sensor is necessary for a full-fledged "immersion" in virtual reality, so it must be provided in glasses made in the form of independent devices (see "Intended use"). But models for PC / consoles may not be equipped with an accelerometer — this means that the glasses are not designed for classic VR, but for more specific tasks (for example, controlling a drone with a first-person view).

As for models for smartphones, most of them do not have this function, since all modern smartphones are equipped with accelerometers. However, there are exceptions — high-end models designed for specific devices: in them, the accelerometer can work in conjunction with a smartphone sensor, which ensures the most accurate image positioning.
Oculus Go 64 Gb often compared
Xiaomi Mi VR Play 2 often compared