Dark mode
Укр|Eng|Рус
Ukraine
Catalog   /   Computing   /   Monitors

Comparison 2E G2423B 23.8 " black vs 2E G2422B 23.8 " black

Add to comparison
2E G2423B 23.8 "  black
2E G2422B 23.8 "  black
2E G2423B 23.8 " black2E G2422B 23.8 " black
Compare prices 55
from 6 313 ₴
Outdated Product
User reviews
0
0
2
0
TOP sellers
out of stock
Product typemonitorgaming
Size23.8 "23.8 "
Screen
Panel typeIPSIPS
Surface treatmentanti-glarematte
Resolution1920x1080 (16:9)1920x1080 (16:9)
Pixel size0.27 mm0.27 mm
Response time (GtG)1 ms1 ms
Refresh rate165 Hz165 Hz
Vertical viewing angle178 °178 °
Horizontal viewing angle178 °178 °
Brightness250 cd/m²250 cd/m²
Static contrast1 000:11 000:1
Colour depth16.7 million colours (8 bits)
HDR+
Connection
Video transmission
DisplayPort
1xHDMI
USB type C (DisplayPort Alt Mode)
DisplayPort
1xHDMI
USB type C (DisplayPort Alt Mode)
Connectors (optional)
mini-Jack output (3.5 mm)
mini-Jack output (3.5 mm)
Features
Features
 
AMD FreeSync
Height adjustment
General
Cable management
Wall mountVESA 100x100mmVESA 100x100mm
Power consumption36 W
External power supply
Dimensions (WxHxD)542х402х180 mm
Weight5.1 kg
Color
Added to E-Catalogjune 2023february 2023

Product type

— Monitor. In this case, we mean monitors designed mainly for classic use — as a screen for a personal computer. Their functionality can be quite diverse — from entry-level screens with 1-2 inputs for connection to multifunctional models with built-in speakers, TV tuners, remote controls, etc. The same applies to the diagonal. Most traditional monitors are in the 22-30" range (these sizes are currently considered optimal for screens whose distance is determined by the width of the desktop), but there are also large-format devices whose diagonal can exceed 32".

Portable monitor. A separate caste of monitors designed to connect to laptops. They are distinguished by small diagonal sizes, not exceeding 18", a thin format and the absence of a stand, as a result of which they look like tablets.

Game monitor. Monitors considered optimal for gaming. These are not necessarily devices specially designed for this application (although there are some); however, all gaming monitors have a number of features that gamers will surely appreciate. Firstly, the resolution (see below) in such models is not lower than Full HD. Secondly, the matrices have a low response time — less than 5 ms, which allows high-quality display of dynamic scenes; and the frame rate often reaches 120 Hz or even more (although there are quite modest values). Thirdly, devices of this type often have special gaming (see...below) and similar features — in particular, most gaming monitors are compatible with FreeSync and/or G-Sync technologies (see "Features").

LCD panel. One of the key features that distinguish LCD panels from conventional monitors is the wide variety of connectors: in addition to video outputs, it includes auxiliary ports such as LAN or RS-232 (see "Connectors (Optional)"). It is also believed that the LCD panel must be hung on the wall without fail, but this has its own specifics. Many devices of this type are really made only for wall installation, and some models can be combined into a video wall that broadcasts one image to several screens. But besides this, there are solutions equipped with stands and allowing desktop use (and sometimes even originally designed for it). At the same time, the first variety, "purely wall-mounted", can have almost any diagonal — including modest 21 – 22 "; but the dimensions of "desktop" panels start at 32", moreover, they most often have advanced matrices like IPS. Anyway, such screens are used mainly in rather specific areas. So, wall mounting is convenient for organizing information boards at stations, airports, shopping centers, for use at exhibition stands, conference rooms, etc. Desktop models are useful for those for whom large size and high image quality are of key importance . Also among them there are many devices with touch screens, which further expands the user experience.

— Plasma panel. These types of devices are similar in many ways to the LCD panels described above, but they also have some key differences. The main one is the technology used for the screen: instead of a liquid crystal matrix, plasma panels use cells filled with a special gas and covered with a luminous substance — a phosphor. This technology provides very high image quality, with deep colour reproduction and contrast. At the same time, it is not easy to create a small plasma cell, which is why the pixels on this type of screens have more stringent restrictions on the minimum size. As a result, plasma panels, in principle, are never small — 42 "is considered almost the minimum size for such a screen. In addition, the reverse side of the described advantages is also a slightly shorter service life and higher cost than LCD matrices. As a result," plasma" has not received much distribution, such devices are bought mainly not for "public", but for personal use — for example, as a home theater screen or as equipment for an advanced gamer.

Video wall. Models designed to build video walls. Such a wall is an array of numerous closely arranged screens that can work in concert and produce a large overall image; each screen is responsible for its own fragment of the picture. Such designs are used, in particular, at concerts and other public events, where there are no longer enough separate screens. The main feature of monitors for video walls is a very thin frame — due to this, the boundaries between the segments are almost invisible, and the image is perceived as a whole.

Information display. Narrow-purpose equipment, assuming a stationary method of installation. Such displays are mounted on the wall, built into special niches or openings. They are intended to work as digital signage, broadcast advertising materials, play various video content. Individual instances of information displays can support touch control, have a pre-installed Smart operating system and other "smart" features. As a rule, specialized proprietary software is used to control the operation of such equipment.

Surface treatment

Modern monitors can use displays with both glossy and matte screen surfaces. A matte surface is in some cases more preferable due to the fact that on a glossy screen, when exposed to bright light, noticeable glare appears, sometimes interfering with viewing. On the other hand, glossy screens offer better picture quality, higher brightness, and richer colours.
Due to the development of technology, monitors with a special anti-glare coating have appeared on the market, which, while maintaining all the advantages of a glossy screen, creates significantly less visible glare in bright ambient light.

Colour depth

The colour depth supported by the monitor.

This parameter characterizes the number of shades that the screen can display. And here it is worth recalling that the image in modern monitors is based on 3 basic colours — red, green, blue (RGB scheme). And the number of bits is indicated not for the entire screen, but for each base colour. For example, 6 bits (the minimum colour depth for modern monitors) means that the screen is capable of producing 2 ^ 6, that is, 64 shades of red, green and blue; the total number of shades will be 64 * 64 * 64 = 262,144 (0.26 million). An 8-bit colour depth (256 shades for each base colour) already gives a total of 16.7 million colours; and the most advanced modern monitors support 10-bit colour, allowing you to work with more than a billion shades.

Screens with support for FRC technology are worth a special mention; nowadays, you can find models marked " 6 bit + FRC " and " 8 bit + FRC ". This technology was developed to improve picture quality in situations where the incoming video signal has a greater colour depth than the screen, such as when 10-bit video is fed to an 8-bit matrix. If such a screen supports FRC, the picture on it will be noticeably better than on a regular 8-bit monitor (although somewhat worse than on a full-fledged 10-bit monitor, but “8 bit + FRC” scre...ens are much cheaper).

High colour depth is important primarily for professional graphics and other tasks that require high colour fidelity. On the other hand, such features significantly affect the cost of the monitor. In addition, it is worth remembering that the quality of colour reproduction depends not only on the colour depth, but also on other parameters — in particular, colour gamut (see below).

HDR

This technology is designed to expand the range of brightness reproduced by the monitor; Simply put, an HDR model will display brighter whites and darker blacks than a "regular" display. In fact, this means a significant improvement in colour quality. On the one hand, HDR provides a very "live" image, close to what the human eye sees, with an abundance of shades and tones that a normal screen cannot convey; on the other hand, this technology allows to achieve very bright and rich colours.

Modern HDR monitors may use the DisplayHDR designation. This standard takes into account a number of parameters that determine the overall quality of HDR performance: brightness, colour gamut, colour depth, etc. Based on the results of measurements, the monitor is assigned one of the following markings: DisplayHDR 400 means relatively modest HDR capabilities, DisplayHDR 600 is average, DisplayHDR 1000 is above average, DisplayHDR 1400 is advanced. At the same time, the absence of a DisplayHDR label in itself does not mean anything: it’s just that not every HDR monitor is tested according to this standard.

Note that for the full use of HDR, you need not only the appropriate monitor, but also content (movies, television, etc.) originally created in HDR. In addition, there are several diff...erent HDR technologies that are not compatible with each other. Therefore, when buying a monitor with this function, it is highly desirable to clarify which version it supports.

Features

KVM switch. The presence of a KVM switch in the monitor - Keyboard, Video, Mouse. This module allows you to control two or more computers using one monitor, one keyboard and one mouse, quickly switching between different PCs (for example, a desktop computer and a laptop). A KVM switch improves productivity when you need to use multiple computers at the same time or one at a time and eliminates desktop clutter. To switch from one computer to another, just one click of the mouse in the proprietary software or a programmed button on the keyboard is enough.

Light sensor. A sensor that monitors the brightness of ambient light. It is mainly used to automatically adjust the brightness of the monitor itself to the specifics of the situation: for example, if the room gets dark, the image on the screen can also be made dimmer, and under sunlight for normal visibility, the brightness should be high. This provides additional comfort for the user and also contributes to energy savings.

Presence sensor. A sensor that detects the presence of a person in front of the screen. Most often used to automatically control sleep mode: if there is no one in front of the monitor for a certain time, the screen backlight turns off, and when the user returns, it turns back on. This contributes to energy savings and increases the life of the matrix. In addition, the sen...sor can be useful for more specific tasks — for example, to control the presence of an employee at the workplace.

PBP (Picture by Picture). Possibility to display two "images" on the monitor at the same time — from two different sources, each of which is connected to its own video input. This feature can be very useful in cases where you have to work with two devices at the same time — for example, with a laptop and the main system unit. The image from both devices is usually displayed side by side. Note that for PBP to work effectively, the screen must be quite large, so this function is found mainly among monitors with the appropriate diagonal — from 27 "and above.

Flicker Free. Brightness control technology that eliminates excessive screen flicker. The idea of this technology is to reduce the brightness of the image directly by reducing the brightness of the backlight (whereas in monitors without Flicker Free, the brightness is adjusted by turning the backlight on and off at a high frequency). Due to the absence of flicker, the load on the eyes and nervous system is reduced, and working with the monitor (especially for a long time) becomes more comfortable.

AMD FreeSync. Monitor compatible with AMD FreeSync technology. As the name suggests, this technology is used in AMD graphics adapters — so it's worth looking for a monitor with this compatibility if your computer has an appropriate graphics card. And the general idea of FreeSync is to match the frame rate of the monitor and the frequency of the video signal from the graphics card. Such a need arises in the light of the fact that in some cases the frame rate of the video signal can “float” (this is especially true for modern games and other resource-intensive tasks); and a mismatch with the monitor's refresh rate can result in jaggies, jerks, and other artifacts. FreeSync avoids this.
Note that in this case we are talking about the original version of this technology — support for FreeSync Premium and Premium Pro is indicated separately, for these versions, see below. A similar solution from NVIDIA is called G-Sync; it is also described below.

AMD FreeSync Premium Pro. The most advanced (at the beginning of 2020) version of the FreeSync technology described above, formerly known as AMD FreeSync 2 HDR. As the first name implies, one of the features of this version is HDR support. In addition, FreeSync Premium Pro claims a frame rate of at least 120 fps at Full HD resolution, as well as low frame rate compensation (LFC). The essence of this function lies in the fact that when the frame rate of the source video signal falls below the minimum frequency supported by the monitor, the same frame is displayed on the screen several times, which allows you to maintain the maximum smoothness of the “picture”. According to the creators, FreeSync Premium Pro works especially well in games; and many modern games are originally designed to work with this technology.

AMD FreeSync Premium. An intermediate option between the basic AMD FreeSync technology and the advanced FreeSync Premium Pro. Both of these versions of the technology are described in more detail above; and FreeSync Premium does not have HDR support (unlike the Pro version), but works at the same frame rate (at least 120 fps at 1920x1080 resolution) and also uses LFC low frame rate compensation technology.

NVIDIA G-Sync. A technology for matching the frame rate of the monitor and the frame rate of the video signal used in NVIDIA video cards. The need for such coordination arises due to the fact that in some cases the frame rate of the video signal can “float” (this is especially true for modern games and other resource-intensive tasks); and a mismatch with the monitor's refresh rate can result in jaggies, jerks, and other artifacts. A similar technology from AMD is called Freesync (see above).
Note that in this case it means support for the original G-Sync technology, which was originally incorporated during production. Support for the more advanced G-Sync Ultimate, as well as G-Sync Compatible compliance, are listed separately (see below).

NVIDIA G-Sync Ultimate. A variation of the G-Sync technology described above, which provides not only for matching the frame rate with the graphics card, but also for a number of improved characteristics of the monitor itself. So, models with this marking necessarily support HDR (and according to a very high standard — not lower than DisplayHDR1000), and also have an extensive colour gamut, often measured by DCI P3 (see above for both). Most of these monitors are gaming monitors (see "Type").

NVIDIA G-Sync compatible. This feature is indicated for monitors that were not originally designed for use with G-Sync technology (see above), but according to the results of testing, they turned out to be compatible with it. All such devices are models with the AMD FreeSync function (also described above), which were tested by nVIDIA and showed the ability to fully work with G-Sync as well (however, we emphasize that FreeSync support by itself does not yet guarantee compatibility with G-Sync) . Anyway, from the user's point of view, the difference lies in the fact that G-Sync Compatible monitors are much cheaper than their counterparts with G-Sync, but may be inferior to them in picture quality. This is due to the fact that these monitors do not undergo additional image quality tests that are required for devices with native G-Sync support. In addition, in G-Sync Compatible models, correct frame synchronization when working with NVIDIA video cards is guaranteed only if the graphics card is based on the GeForce GTX 10-series and GeForce RTX 20-series GPUs — these are the adapters that compatibility testing is carried out on.

Adaptive Sync. Screen support for VESA Adaptive-Sync technology. The feature aims to synchronize the display's refresh rate with the GPU's frame rate to reduce latency, minimize artifacts, and eliminate visual tearing. Adaptive-Sync certified screens should run at a default refresh rate of 120Hz, but should be able to drop the frame rate down to 60Hz. The actual response time of such displays should be less than 5 ms. It is important to note that VESA Adaptive-Sync technology is only available for DisplayPort version 1.2a or later.

CalMAN certification. The monitor has a CalMAN Verified certificate. This certification is given to high-quality screens after they have been tested and calibrated using CalMAN, a professional suite of software tools used for colour manipulation and sensor colour adjustment. The accuracy of these tools is such that even Hollywood filmmakers use them; and in the case of monitors, CalMAN certification is an additional sign of high quality — it means that the colours on such a screen will be displayed as faithfully as possible. Such models are intended mainly for professionals working with colour, as well as for connoisseurs of high-quality video content.

Pantone certified. The presence of the monitor certificate "Pantone Validated" — that is, a certificate of compliance with the Pantone colour system (PMS). This is a professional colour system created by the company of the same name and widely used in design and printing. One of Pantone's basic ideas is that each colour should remain the same at all stages of work — from agreeing on a general idea to printing / releasing the final product; To do this, all shades covered by the system are assigned code names, which are used in the work. In the case of monitors, Pantone certification means that when working with materials and software tools that use a given colour scheme, the colours on the screen will match the actual Pantone hues as closely as possible. We emphasize that there is no question of perfect correspondence (LCD matrices are not physically capable of adequately displaying some shades); in addition, monitors with such certification may have different colour gamuts — both in percentage and in the systems used for designation (sRGB, Adobe RGB, DCI P3 — see above). However, even if the colour is beyond the capabilities of the screen, it will be displayed as accurately as possible. Therefore, for professional tasks associated with intensive use of Pantone, it is worth choosing monitors with official certification; An example of such tasks is the printing of image printing.

Height adjustment

The ability to move the monitor screen up and down relative to the base. This feature is very convenient for adjusting the height of the screen — moving it on the mount is much easier than looking for a stand or resorting to other tricks.

Cable management

This feature means that the wires connected to the monitor (primarily for the video signal and power supply) can be hidden inside the stand, thus hiding them completely or almost completely.

Hidden cable routing gives the monitor a neat appearance. In addition, it often turns out to be useful from a practical point of view — the wires are in one place, do not get confused at hand and do not interfere, for example, when connecting other peripherals. However the procedure for a hidden connection is somewhat more complicated than an open one; however, in most cases this point is not fundamental.

Note that in some monitors, the complete stand is equipped with external wire mounts (usually in the form of characteristic hooks). They allow you to organize cables, but practically do not hide them; therefore, such a feature is not considered hidden styling.

Power consumption

Rated power consumption of the monitor. Usually, this item indicates the maximum power that the device can consume during normal operation — that is, the energy consumption at maximum brightness, the highest volume of the built-in acoustics, etc. Actual power consumption can be noticeably lower, however, when choosing, it is still best to focus on the value stated in the specifications.

In general, the lower the power consumption, the more economical the device in terms of electricity consumption (ceteris paribus). In addition, this characteristic can be useful when selecting an uninterruptible power supply for a PC and in other specific situations when it is necessary to accurately determine the power consumption of equipment.

External power supply

The power supply, made separately, outside the monitor case — usually right on the power cord (similar to how it is implemented, for example, in many laptops).

This arrangement allows you to take out a fairly significant part of the hardware outside the case. Therefore, monitors with an external power supply are themselves thinner and more elegant than similar models with a built-in power supply. On the other hand, the need to look for a place for the PSU itself in some situations can cause inconvenience. Therefore, when choosing, it is worth considering the peculiarities of the situation: in some cases, an integrated power supply may well be the best option.
Price graph
2E G2423B often compared