Макс. корисне збільшення
Найбільшу корисне збільшення, яке здатний забезпечити телескоп.
Фактична ступінь збільшення телескопа залежить від фокусних відстаней об'єктива (див. вище) і окуляра. Поділивши перше на друге, отримуємо ступінь збільшення: наприклад, система з об'єктивом 1000 мм і окуляром 5 мм дасть 1000/5 = 200х (за відсутності інших елементів, що впливають на кратність, таких як лінза Барлоу — див. нижче). Таким чином, встановлюючи в телескоп різні окуляри, можна змінювати ступінь його збільшення. Однак підвищувати кратність понад певної межі просто не має сенсу: хоча видимі розміри об'єктів при цьому будуть збільшуватися, їх деталізація не покращиться, і замість невеликого і чіткого зображення спостерігач буде бачити велике, але розпливчасте. Максимальне корисне збільшення якраз і є тією межею, вище якого телескоп просто не зможе забезпечити нормальну якість зображення. Вважається, що за законами оптики цей показник не може бути більшим, ніж діаметр об'єктива в міліметрах, помножений на два: наприклад, для моделі з вхідних лінзою на 120 мм максимальне корисне збільшення складе 120х2=240х.
Зазначимо, що робота на даній ступеня кратності не означає максимальної якості і чіткості зображення, проте у деяких випадках може виявитися досить зручною; докладніше про це див. «Макс. дозволяюче збільшення»
Мін. збільшення
Найменше збільшення, яке забезпечує телескоп. Як і в разі максимального корисного збільшення (див. вище), в даному випадку мова йде не про абсолютно можливого мінімуму, а про межі, заходити за який не має сенсу з практичної точки зору. В даному випадку цей межу пов'язаний з розмірами вихідного окуляра телескопа — грубо кажучи, цятки світла, проєктованого окуляром на око спостерігача. Чим менше збільшення — тим більша вихідна зіниця; якщо він стає більше, ніж зіницю ока спостерігача, то частина світла в око, по суті, не потрапляє, і ефективність оптичної системи знижується. Мінімальне збільшення — це таке збільшення, при якому діаметр вихідного зіниці телескопа дорівнює розміру зіниці ока в нічних умовах (7 – 8 мм); також цей параметр називають «равнозрачковое збільшення». Використання телескопа з окулярами, що забезпечують менші значення кратності, вважається невиправданим.
Зазвичай, для визначення равнозрачкового збільшення використовують формулу D/7, де D — діаметр об'єктива в міліметрах (див. вище): наприклад, для моделі з апертурою 140 мм мінімальне збільшення становитиме 140/7 = 20х. Однак ця формула справедлива лише для нічного застосування; при спостереженні днем, коли зіницю в оці зменшується в розмірі, фактичні значення мінімального збільшення більше — близько D/2.
Екранування об'єктива (за діаметром)
Діаметр простору в полі зору телескопа, закритого яким-небудь елементом конструкції.
Екранування зустрічається виключно у моделях з дзеркалами (рефлекторах і
дзеркально-лінзових, див. «Конструкція»): особливості їхньої будови такі, що якийсь допоміжний елемент (наприклад, дзеркало, направляє світло в окуляр) неодмінно розташовується на шляху потрапляє в об'єктив світла і перекриває його частина. Екранування за діаметром вказується у відсотках від розміру об'єктива телескопа (див. вище): d/D*100%, де d— діаметр екрану, D — діаметр об'єктива. Також цей показник називають «лінійний коефіцієнт екранування».
Сторонній предмет у полі зору може створити перешкоди при спостереженні — наприклад, у вигляді темної плями при наведенні телескопа точно на джерело світла. Однак набагато більш серйозним недоліком є помітне зниження контрастності, пов'язане з дифракцією світла навколо екрану, і, відповідно, погіршення якості зображення. Лінійний коефіцієнт екранування є основним показником того, наскільки екран впливає на якість «картинки»: значення до 25% вважаються непоганими, до 30% — прийнятними, до 40% — терпимими, а екранування більш ніж на 40% за діаметром призводить до серйозних викривлень.
Екранування об'єктива (за площею)
Площа простору в полі зору телескопа, закритого яким-небудь елементом конструкції.
Екранування зустрічається виключно у моделях з дзеркалами (рефлекторах і дзеркально-лінзових, див. «Конструкція»): особливості їхньої будови такі, що якийсь допоміжний елемент (наприклад, діагональне дзеркало, див. нижче) неодмінно розташовується на шляху потрапляє в об'єктив світла і перекриває його частина. Сторонній предмет у полі зору може створити перешкоди при спостереженні — наприклад, у вигляді темної плями при наведенні телескопа точно на джерело світла. Однак набагато більш серйозним недоліком є помітне зниження контрастності, пов'язане з дифракцією світла навколо екрану, і, відповідно, погіршення якості зображення. При цьому чим більший екран, тим сильніше вплив на якість «картинки».
Екранування по площі вказується у відсотках від загальної площі об'єктива: s/S*100, де s — площа екрану, S — площа об'єктива. Цей параметр на практиці використовується набагато рідше, ніж описане вище екранування за діаметром, оскільки залежність якості зображення від площі екрану описується більш складними формулами, та й саму площу визначити важче. Також відзначимо, що деякі виробники або продавці можуть використовувати дані екранування по площі в маркетингових цілях. Наприклад, для телескопа з екрануванням за діаметром в 30% екранування по площі складе всього 9%; друга цифра створює оманливе враження невеликих розмірів екрану, тоді як фактично він досить великий і...вже помітно впливає на контрастність і якість зображення.
Фокусер
Тип фокусера (механічного вузла, який відповідає за фокусування зображення), передбаченого в конструкції телескопа. Процедура фокусування передбачає переміщення окуляра телескопа щодо об'єктива; різні типи фокусерів відрізняються за типом механізму, який забезпечує подібне переміщення.
— Рейковий. Як випливає з назви, подібні фокусери використовують механізм на основі зубчастої рейки, що переміщується за рахунок повороту ведучої шестерні; а ця шестерня, зі свого боку, пов'язана з ручкою фокусування. Головними перевагами рейкових систем є простота і невисока вартість. Водночас подібні механізми не дуже точні, до того ж часто мають люфти. У зв'язку з цим фокусери даного типу характерні переважно для недорогих телескопів початкового рівня.
— Крейфорда.
Фокусери системи Крейфорда використовують роликові механізми, в яких зубці відсутні, а переміщення окуляра здійснюється за рахунок сили тертя між роликом і рухомою поверхнею. Вони вважаються значно більш прогресивними, ніж рейкові — зокрема, завдяки відсутності люфтів і плавному фокусуванні. Єдиним серйозним недоліком «крейфордів» можна назвати певну ймовірність проковзування; однак за рахунок застосування спеціальних матеріалів і інших конструктивних хитрощів подібна ймовірність практично зводиться до нуля. Завдяки цьому даний різновид фокусерів зустрічається навіть у найбільш прогресивних телескопах професійного рівня.
— Різьбовий. Конструкція різьбового
...фокусера має в основі дві трубки — одна вставлена в іншу і посаджена на різьбу. Рух окуляра, необхідний для фокусування, здійснюється за рахунок обертання навколо поздовжньої осі – аналогічно тому, як ґвинт рухається в різьбі. Подібні фокусери максимально прості і недорогі, проте схильні до помітних люфтів і потребують регулярного змащення. Крім того, вони досить незручні для астрофотографії: при налаштуванні фокусу доводиться обертати приєднану до окуляра камеру. Тому даний різновид фокусуючих механізмів зустрічається досить рідко, переважно в невеликих і недорогих телескопах.Окуляри
В даному пункті зазначаються окуляри, що входять у штатний комплект поставки телескопа, точніше — фокусні відстані цих окулярів.
Маючи ці дані і знаючи фокусна відстань телескопа (див. вище), можна визначити ступінь збільшення, що пристрій може видавати в комплектації «з коробки». Для телескопа без лінз Барлоу (див. нижче) та інших додаткових елементів подібного призначення кратність дорівнює фокусній відстані об'єктива, поделенному на фокусна відстань окуляра. Наприклад, оптика на 1000 мм, укомплектована «вічками» на 5 та 10 мм, буде здатна видати збільшення 1000/5=200х і 1000/10=100х.
За відсутності відповідного окуляра в комплекті його, зазвичай, можна докупити окремо.
Посадковий діаметр окуляра
Розмір «посадкового місця» під окуляр, яке передбачене у телескопа. У сучасних моделях використовуються гнізда стандартних розмірів — найчастіше 0,96", 1,25" або 2".
Цей параметр стане в нагоді насамперед у тому випадку, якщо Ви хочете купити окуляри окремо: їхній посадковий діаметр повинен відповідати характеристикам телескопа. Втім, 2" гнізда допускають встановлення окулярів на 1,25" через спеціальний адаптер, але зворотний варіант неможливий. Зазначимо, що телескопи з посадковим діаметром 2" вважаються найбільш прогресивними, оскільки під цей розмір випускається, крім окулярів, безліч додаткових аксесуарів (коректори спотворень, фотоадаптери, тощо), а самі 2" окуляри забезпечують більш широке поле зору (щоправда, і коштують дорожче). Зі свого боку «вічка» на 1,25" застосовуються у відносно недорогих моделях, а на 0,96" — у найпростіших телескопах початкового рівня з невеликими об'єктивами (зазвичай до 50 мм).
Просвітлення оптики
Наявність просвітлюючого покриття на поверхні лінз, а іноді – також призм телескопа. Таке покриття створює на скляній поверхні характерні кольорові відблиски або райдужні розводи.
Сенс просвітлення зрозумілий вже з назви: така особливість покращує загальне світлопропускання, забезпечуючи таким чином більш світле, чітке і якісне зображення. Для телескопів це особливо важливо, оскільки такі прилади застосовуються переважно в нічний час і мають справу з дуже невеликою кількістю світла. Загальний принцип роботи просвітлюючих покриттів полягає в тому, що вони знижують коефіцієнт відбиття лінзи/призми, даючи можливість більшій кількості світла проходити через неї. На практиці це реалізується так: світло проходить через покриття до основного скла, відбивається від нього, однак замість того, щоб розсіятися — досягає межі між покриттям і повітрям і відбивається вже від неї, розвертаючись «назад» в первісний напрямок. Подібним чином можна знизити втрати світла на відображення з 5 % (лінза без покриття) до 1% при одношаровому і 0,2% і навіть менше при багатошаровому просвітленні; при цьому, завдяки мікроскопічній товщині, подібні покриття не вносять геометричних спотворень у видиме зображення.
Як правило, тип просвітлення додатково уточнюється в документації виробника, і а іноді і прямо в характеристиках. Всього основних типів 4, ось їх основні особливості:
– Одношарове (C). Один шар покриття на окремих (не на всіх) оптичних елементах, а найчастіше — і в...загалі тільки лише на зовнішній поверхні об'єкта. Це найбільш простий і недорогий варіант, застосовуваний переважно в недорогих моделях, не розрахованих на серйозні завдання. Пов'язано це з тим, що в цілому одношарове просвітлення діє лише на частину видимого спектру, через що поступається багатошаровому як за ефективністю, так і за достовірністю кольоропередачі (іноді спотворення кольорів можуть бути вельми помітними). А в даному разі таке покриття ще й нанесено не на все, а лише на окремі деталі оптичної системи. Так що хоча одношарове просвітлення краще, ніж взагалі ніяке, але підходить воно переважно для розважального застосування.
– Повне одношарове (FC). Одношарове покриття, нанесене на всі оптичні елементи телескопа. Дає максимальну ефективність, доступну для подібних покриттів в принципі. Однак оскільки даний тип покриття ефективний лише для відносно невеликої частини видимого спектру, то якість передачі кольорів все одно виходить нижче, ніж в багатошарових системах.
– Багатошарове (MC). Покриття з декількох шарів з різними показниками заломлення, нанесене на один або на кілька елементів оптики (але не на все). Кількість шарів може бути різною — від 2 – 3 в порівняно недорогих рішеннях до 6 – 8 і більше в висококласних телескопах. Однак навіть порівняно прості багатошарові покриття перекривають практично весь видимий спектр і в рази перевершують одношарові за ступенем зниження відображень. Так що якщо для вас важливі гарна яскравість і достовірна кольоропередача — то даний варіант буде кращим, ніж навіть повне одношарове просвітлення, не кажучи вже про неповне. З іншого боку, і обходиться така оптика дорожче рішень з одним шаром просвітлюючого покриття.
– Повне багатошарове. Найбільш прогресивний тип просвітлення: багатошарове покриття, нанесене на всі елементи оптичної системи. Цей варіант забезпечує надзвичайно високе світлопропускання і достовірну кольоропередачу, однак і обходиться недешево. Тому його можна зустріти переважно серед висококласних телескопів; а спеціально шукати модель з таким просвітленням варто тоді, коли і яскравість картинки, і достовірність кольорів мають для вас принципове значення.
Діагональне дзеркало
Наявність діагонального дзеркала у конструкції чи в комплекті телескопа.
Даний аксесуар застосовується в поєднанні з лінзовими і дзеркально-лінзовими телескопами (див. «Конструкція»). У таких моделях окуляр розташований в торці труби і спрямований вздовж оптичної осі телескопа; в деяких ситуаціях — наприклад, при спостереженні об'єктів поблизу зеніту — подібне розташування може бути дуже незручним для спостерігача.
Діагональне дзеркало дає змогу направити окуляр під кутом до оптичної осі, що забезпечує комфорт у згаданих ситуаціях. Щоправда, зображення зазвичай виходить віддзеркаленим (справа наліво), однак при спостереженнях астрономічних об'єктів це навряд чи можна назвати серйозним недоліком. Діагональні дзеркала можуть бути як знімними, так і вбудованими, також може передбачатися можливість змінювати кут повороту окуляра.