Украина
Каталог   /   Фототехника   /   Оптические приборы   /   Телескопы

Сравнение Celestron Astro Fi 130 vs Celestron SkyProdigy 130

Добавить в сравнение
Celestron Astro Fi 130
Celestron SkyProdigy 130
Celestron Astro Fi 130Celestron SkyProdigy 130
Сравнить цены 4
от 34 466 грн.
Товар устарел
ТОП продавцы
Главное
Беспроводное управление по Wi-Fi.
Конструкциязеркальный (рефлекторы)зеркальный (рефлекторы)
Тип монтировкиазимутальнаяазимутальная
Характеристики
Диаметр объектива130 мм130 мм
Фокусное расстояние650 мм650 мм
Макс. полезное увеличение307 x260 x
Макс. разрешающее увеличение195 x195 x
Мин. увеличение18 x19 x
Светосила1/51/5
Проницающая способность13.1 зв.вел13.1 зв.вел
Разрешающая способность (Dawes)0.89 угл.сек0.89 угл.сек
Разрешающая способность (Rayleigh)1.07 угл.сек1.07 угл.сек
Экранирование объектива (по диаметру)29 %
Экранирование объектива (по площади)9 %
Дополнительно
Искательс точечной наводкой (LED)с точечной наводкой (LED)
ФокусерреечныйКрейфорда
Окуляры25 мм (26x), 10 мм (65x)25 мм (26x), 9 мм (72x)
Посадочный диаметр окуляра1.25 "
2 " /1.25 "/
Просветление оптики
Зеркалосферическоесферическое
Диагональное зеркало
Электронное управление
Автонаведение
Автослежение
Общее
Длина трубы66 см
Общий вес7.71 кг
Дата добавления на E-Katalogноябрь 2017март 2015

Макс. полезное увеличение

Наибольшее полезное увеличение, которое способен обеспечить телескоп.

Фактическая степень увеличения телескопа зависит от фокусных расстояний объектива (см. выше) и окуляра. Поделив первое на второе, получаем степень увеличения: например, система с объективом 1000 мм и окуляром 5 мм даст 1000/5 = 200х (при отсутствии других элементов, влияющих на кратность, таких как линза Барлоу — см. ниже). Таким образом, устанавливая в телескоп разные окуляры, можно изменять степень его увеличения. Однако повышать кратность сверх определённого предела попросту не имеет смысла: хотя видимые размеры объектов при этом будут увеличиваться, их детализация не улучшится, и вместо небольшого и чёткого изображения наблюдатель будет видеть крупное, но расплывчатое. Максимальное полезное увеличение как раз и является тем пределом, выше которого телескоп попросту не сможет обеспечить нормальное качество изображения. Считается, что по законам оптики этот показатель не может быть больше, чем диаметр объектива в миллиметрах, умноженный на два: например, для модели с входной линзой на 120 мм максимальное полезное увеличение составит 120х2=240х.

Отметим, что работа на данной степени кратности не означает максимального качества и чёткости изображения, однако в некоторых случаях может оказаться весьма удобной; подробнее об этом см. «Макс. разрешающее увеличение»

Мин. увеличение

Наименьшее увеличение, которое обеспечивает телескоп. Как и в случае максимального полезного увеличения (см. выше), в данном случае речь идёт не об абсолютно возможном минимуме, а о пределе, заходить за который не имеет смысла с практической точки зрения. В данном случае этот предел связан с размерами выходного зрачка телескопа — грубо говоря, пятнышка света, проецируемого окуляром на глаз наблюдателя. Чем меньше увеличение — тем крупнее выходной зрачок; если он становится больше, чем зрачок глаза наблюдателя, то часть света в глаз, по сути, не попадает, и эффективность оптической системы снижается. Минимальное увеличение — это такое увеличение, при котором диаметр выходного зрачка телескопа равен размеру зрачка человеческого глаза в ночных условиях (7 – 8 мм); также этот параметр называют «равнозрачковое увеличение». Использование телескопа с окулярами, обеспечивающими меньшие значения кратности, считается неоправданным.

Как правило, для определения равнозрачкового увеличения используют формулу D/7, где D — диаметр объектива в миллиметрах (см. выше): например, для модели с апертурой 140 мм минимальное увеличение будет составлять 140/7 = 20х. Однако эта формула справедлива только для ночного применения; при наблюдении днём, когда зрачок в глазу уменьшается в размере, фактические значения минимального увеличения будут больше — порядка D/2.

Экранирование объектива (по диаметру)

Диаметр пространства в поле зрения телескопа, закрытого каким-либо элементом конструкции.

Экранирование встречается исключительно в моделях с зеркалами (рефлекторах и зеркально-линзовых, см. «Конструкция»): особенности их устройства таковы, что какой-либо вспомогательный элемент (например, зеркало, направляющее свет в окуляр) непременно располагается на пути попадающего в объектив света и перекрывает его часть. Экранирование по диаметру указывается в процентах от размера объектива телескопа (см. выше): d/D*100%, где d— диаметр экрана, D — диаметр объектива. Также этот показатель называют «линейный коэффициент экранирования».

Посторонний предмет в поле зрения может создать помехи при наблюдении — например, в виде тёмного пятна при наведении телескопа точно на источник света. Однако намного более серьёзным недостатком является заметное снижение контрастности, связанное с дифракцией света вокруг экрана, и, соответственно — ухудшение качества изображения. Линейный коэффициент экранирования является основным показателем того, насколько экран влияет на качество «картинки»: значения до 25% считаются неплохими, до 30% — приемлемыми, до 40% — терпимыми, а экранирование более чем на 40% по диаметру приводит к серьёзным искажениям.

Экранирование объектива (по площади)

Площадь пространства в поле зрения телескопа, закрытого каким-либо элементом конструкции.

Экранирование встречается исключительно в моделях с зеркалами (рефлекторах и зеркально-линзовых, см. «Конструкция»): особенности их устройства таковы, что какой-либо вспомогательный элемент (например, диагональное зеркало, см. ниже) непременно располагается на пути попадающего в объектив света и перекрывает его часть. Посторонний предмет в поле зрения может создать помехи при наблюдении — например, в виде тёмного пятна при наведении телескопа точно на источник света. Однако намного более серьёзным недостатком является заметное снижение контрастности, связанное с дифракцией света вокруг экрана, и, соответственно — ухудшение качества изображения. При этом чем крупнее экран — тем сильнее влияние на качество «картинки».

Экранирование по площади указывается в процентах от общей площади объектива: s/S*100, где s — площадь экрана, S — площадь объектива. Данный параметр на практике используется гораздо реже, чем описанное выше экранирование по диаметру, т.к. зависимость качества изображения от площади экрана описывается более сложными формулами, да и саму площадь определить труднее. Также отметим, что некоторые производители или продавцы могут использовать данные экранирования по площади в маркетинговых целях. Например, для телескопа с экранированием по диаметру в 30% экранирование по площади составит всего 9%; вторая цифра создаёт обманчивое впечатление небольших разме...ров экрана, тогда как фактически он довольно велик и уже заметно влияет на контрастность и качество изображения.

Фокусер

Тип фокусера (механического узла, отвечающего за фокусировку изображения), предусмотренного в конструкции телескопа. Процедура фокусировки предусматривает перемещение окуляра телескопа относительно объектива; разные типы фокусеров отличаются по типу механизма, который обеспечивает подобное перемещение.

— Реечный. Как следует из названия, подобные фокусеры используют механизм на основе зубчатой рейки, перемещаемой за счёт поворота ведущей шестерни; а эта шестерня, в свою очередь, связана с ручкой фокусировки. Главными достоинствами реечных систем являются простота и невысокая стоимость. В то же время подобные механизмы не очень точны, к тому же часто имеют люфты. В связи с этим фокусеры данного типа характерны преимущественно для недорогих телескопов начального уровня.

— Крейфорда. Фокусеры системы Крейфорда используют роликовые механизмы, в которых зубцы отсутствуют, а перемещение окуляра осуществляется за счёт силы трения между роликом и подвижной поверхностью. Они считаются значительно более продвинутыми, чем реечные — в частности, благодаря отсутствию люфтов и плавной фокусировке. Единственным серьёзным недостатком «крейфордов» можно назвать определённую вероятность проскальзывания; однако за счёт применения специальных материалов и других конструктивных ухищрений подобная вероятность практически сводится к нулю. Благодаря этому данная разновидность фокусеров встречается даже в наиболее продвинутых теле...скопах профессионального уровня.

— Резьбовой. Конструкция резьбового фокусера имеет в основе две трубки — одна вставлена в другую и посажена на резьбу. Движение окуляра, необходимое для фокусировки, осуществляется за счёт вращения вокруг продольной оси — аналогично тому, как винт движется в резьбе. Подобные фокусеры предельно просты и недороги, однако подвержены заметным люфтам и требуют регулярной смазки. Кроме того, они довольно неудобны для астрофотографии: при настройке фокуса приходится вращать подсоединённую к окуляру камеру. Поэтому данная разновидность фокусирующих механизмов встречается довольно редко, в основном в небольших и относительно недорогих телескопах.

Окуляры

В данном пункте указываются окуляры, входящие в штатный комплект поставки телескопа, точнее — фокусные расстояния этих окуляров.

Имея эти данные и зная фокусное расстояние телескопа (см. выше), можно определить степени увеличения, которые устройство может выдавать в комплектации «из коробки». Для телескопа без линз Барлоу (см. ниже) и других дополнительных элементов подобного назначения кратность будет равна фокусному расстоянию объектива, поделенному на фокусное расстояние окуляра. Например, оптика на 1000 мм, укомплектованная «глазками» на 5 и 10 мм, будет способна выдать увеличения 1000/5=200х и 1000/10=100х.

При отсутствии подходящего окуляра в комплекте его, как правило, можно докупить отдельно.

Посадочный диаметр окуляра

Размер «посадочного места» под окуляр, предусмотренного в конструкции телескопа. В современных моделях используются гнёзда стандартных размеров — чаще всего 0,96", 1,25" либо 2".

Этот параметр пригодится прежде всего в том случае, если Вы хотите докупить окуляры отдельно: их посадочный диаметр должен соответствовать характеристикам телескопа. Впрочем, 2" гнёзда допускают установку окуляров на 1,25" через специальный переходник, но обратный вариант невозможен. Отметим, что телескопы с посадочным диаметром 2" считаются наиболее продвинутыми, т.к. под этот размер выпускается, помимо окуляров, множество дополнительных аксессуаров (корректоры искажений, фотоадаптеры и т.п.), а сами 2" окуляры обеспечивают более обширное поле зрения (правда, и стоят дороже). В свою очередь «глазки» на 1,25" применяется в относительно недорогих моделях, а на 0,96" — в простейших телескопах начального уровня с небольшими объективами (обычно до 50 мм).

Просветление оптики

Наличие просветляющего покрытия на поверхности линз, а иногда — также призм телескопа. Такое покрытие создает на стеклянной поверхности характерные цветные блики или радужные разводы.

Смысл просветления понятен уже из названия: такая особенность улучшает общее светопропускание, обеспечивая таким образом более светлое, четкое и качественное изображение. Для телескопов это особенно важно, поскольку такие приборы применяются в основном в ночное время и имеют дело с очень небольшим количеством света. Общий принцип работы просветляющих покрытий состоит в том, что они снижают коэффициент отражения линзы/призмы, позволяя большему количеству света проходить через нее. На практике это реализуется так: свет проходит через покрытие до основного стекла, отражается от него, однако вместо того, чтобы рассеяться — достигает границы между покрытием и воздухом и отражается уже от нее, разворачиваясь «обратно» в первоначальное направление. Подобным образом можно снизить потери света на отражение с 5 % (линза без покрытия) до 1 % при однослойном и 0,2 % и даже менее при многослойном просветлении; при этом, благодаря микроскопической толщине, подобные покрытия не вносят геометрических искажений в видимое изображение.

Как правило, тип просветления дополнительно уточняется в документации производителя, и а иногда и прямо в характеристиках. Всего основных типов 4, вот их основные особенности:

— Однослойное (C). Один слой покрытия на отдельных (не на всех) оптических...элементах, а чаще всего — и вовсе только лишь на внешней поверхности объектива. Это наиболее простой и недорогой вариант, применяемый в основном в недорогих моделях, не рассчитанных на серьезные задачи. Связано это с тем, что в целом однослойное просветление действует лишь на часть видимого спектра, из-за чего уступает многослойному как по эффективности, так и по достоверности цветопередачи (иногда искажения цветов могут быть весьма заметными). А в данном случае такое покрытие еще и нанесено не на все, а лишь на отдельные детали оптической системы. Так что хотя однослойное просветление лучше, чем вообще никакого, но подходит оно в основном для развлекательного применения.

— Полное однослойное (FC). Однослойное покрытие, нанесенное на все оптические элементы телескопа. Дает максимальную эффективность, доступную для подобных покрытий в принципе. Однако поскольку данный тип покрытия эффективен лишь для относительно небольшой части видимого спектра, то качество передачи цветов все равно получается ниже, чем в многослойных системах.

— Многослойное (MC). Покрытие из нескольких слоев с разными показателями преломления, нанесенное на один или на несколько элементов оптики (но не на все). Количество слоев может быть разным — от 2 – 3 в сравнительно недорогих решениях до 6 – 8 и более в высококлассных телескопах. Однако даже сравнительно простые многослойные покрытия перекрывают практически весь видимый спектр и в разы превосходят однослойные по степени снижения отражений. Так что если для вас важны хорошая яркость и достоверная цветопередача — то данный вариант будет более предпочтительным, чем даже полное однослойное просветление, не говоря уже о неполном. С другой стороны, и обходится такая оптика дороже решений с одним слоем просветляющего покрытия.

— Полное многослойное. Наиболее продвинутый тип просветления: многослойное покрытие, нанесенное на все элементы оптической системы. Этот вариант обеспечивает чрезвычайно высокое светопропускание и достоверную цветопередачу, однако и обходится недешево. Поэтому его можно встретить в основном среди высококлассных телескопов; а специально искать модель с таким просветлением стоит тогда, когда и яркость картинки, и достоверность цветов имеют для вас принципиальное значение.

Диагональное зеркало

Наличие диагонального зеркала в конструкции или комплекте поставки телескопа.

Данный аксессуар применяется в сочетании с линзовыми и зеркально-линзовыми телескопами (см. «Конструкция»). В таких моделях окуляр располагается в торце трубы и направлен вдоль оптической оси телескопа; в некоторых ситуациях — например, при наблюдении объектов вблизи зенита — подобное расположение может быть весьма неудобным для наблюдателя. Диагональное зеркало позволяет направить окуляр под углом к оптической оси, что обеспечивает комфорт в упомянутых ситуациях. Правда, изображение обычно получается отзеркаленным (справа налево), однако при наблюдениях астрономических объектов это навряд ли можно назвать серьёзным недостатком. Диагональные зеркала могут быть как съёмными, так и встроенными, также может предусматриваться возможность изменять угол поворота окуляра.
Динамика цен
Celestron Astro Fi 130 часто сравнивают