Укр|Eng|Рус
Ukraine
Catalog   /   Tools & Gardening   /   Machines & Equipment   /   Generators

Comparison Konner&Sohnen Basic KSB 22i S vs Rato R2000iS

Add to comparison
Konner&Sohnen Basic KSB 22i S
Rato R2000iS
Konner&Sohnen Basic KSB 22i SRato R2000iS
Compare prices 29Compare prices 5
TOP sellers
Main
Inverter alternator. Light weight.
Fuelpetrolpetrol
Output voltage230 B230 B
Rated power1.8 kW1.6 kW
Max. power2 kW1.8 kW
Alternatorinverterinverter
Alternator windingcopper
Engine
ICE type4-stroke4-stroke
Motor typeKSB 100iR80-i
Engine size80 cm³80 cm³
Power2.5 hp
Launch typemanualmanual
Fuel consumption1 L/h
Fuel tank volume4 L4 L
Fuel level indicator
Continuous operation time4 h
Motor coolingairair
Connection
Number of sockets (230/400 V)21
Sockets 230 V16 A x216 A x1
Output 12 Vsocket
General
Sound insulation cover
Protection levelIP 23
Noise level87 dB90 dB
Sound level (7 m)62 dB
Dimensions510x310x525 mm498x290x459 mm
Weight15.6 kg22 kg
Added to E-Catalogmay 2021april 2020

Rated power

The rated power of the generator is the highest power supply that the unit is capable of delivering without problems for an unlimited time. In the “weakest” models this figure is less than 1 kW, in the most powerful – 50 – 100 kW or even more ; and generators with welding capabilities (see below) typically have power ratings ranging from 1 – 2 kW to 8 – 10 kW.

The main rule of choice in this case is this: the rated power must not be lower than the total power consumption of the entire connected load. Otherwise, the generator simply will not be able to produce a sufficient amount of energy, or it will work with overloads. However, to determine the minimum required generator power, it is not enough to simply add up the number of watts indicated in the characteristics of each connected device - the calculation method is somewhat more complicated. Firstly, you need to take into account that only the active power of various equipment is usually indicated in watts; In addition, many AC electrical appliances consume reactive power (the "waste" power consumed by coils and capacitors when operating at that power). And the actual load on the generator depends precisely on the total power (active plus reactive), indicated in volt-amperes. There are special coefficients and formulas for its calcula...tion.

The second nuance is related to the power supply of devices in which the starting power (and, accordingly, the power consumption at the moment of switching on) is significantly higher than the rated one - these are mainly devices with electric motors such as vacuum cleaners, refrigerators, air conditioners, power tools, etc. You can determine the starting power by multiplying the standard power by the so-called starting coefficient. For one type of equipment it is more or less the same - for example, 1.2 - 1.3 for most power tools, 2 for a microwave, 3.5 for an air conditioner, etc.; More detailed data is available in special sources. Starting characteristics of the load are necessary, first of all, to assess the required maximum power of the generator (see below) - however, this power is not always given in the characteristics; often the manufacturer indicates only the rated power of the unit. In such cases, when calculating for equipment with a starting coefficient of more than 1, it is worth using the starting power, and not the rated power.

Also note that if there are several outlets, the specific division of the total power among them may be different. This point should be clarified separately - in particular, for specific types of sockets (for more details, see “230 V sockets”, “400 V sockets”).

Max. power

The maximum power supply that the generator can provide.

This power is slightly higher than the rated power (see above), but the maximum performance mode can only be maintained for a very short time - otherwise overload occurs. Therefore, the practical meaning of this characteristic is mainly to describe the efficiency of the generator when operating with increased starting currents.

Let us remind you that some types of electrical appliances at the moment of startup consume many times more power (and, accordingly, power) than in normal mode; this is typical mainly for devices with electric motors, such as power tools, refrigerators, etc. However, increased power for such equipment is needed only for a short time; normal operation is restored in just a few seconds. And you can evaluate the starting characteristics by multiplying the rated power by the so-called starting coefficient. For one type of equipment it is more or less the same (1.2 - 1.3 for most power tools, 2 for a microwave, 3.5 for an air conditioner, etc.); More detailed data is available in special sources.

Ideally, the maximum power of the generator should be no lower than the total peak power of the connected load - that is, the starting power of equipment with a starting factor above 1 plus the rated power of all other equipment. This will minimize the likelihood of overloads.

Alternator winding

Copper. Copper winding is typical for advanced class generators. The copper alternator is characterized by high conductivity and low resistance. The conductivity of copper is 1.7 times higher than the conductivity of aluminium, such a winding heats up less, and compounds made of this metal endure temperature drops and vibration loads. Among the disadvantages of the copper winding, one can only note the high cost of the alternator. Otherwise, generators with copper winding have high reliability and durability.

— Aluminium. The aluminium winding of the alternator is typical for low-cost-class generators. The main advantages of aluminium are light weight and low price; otherwise, such a winding is usually inferior to copper counterparts. An oxide film is created on the surface of aluminium, it appears everywhere, even in the places of contact soldering. The oxide film undermines the contacts and does not allow the outer protective braid to securely hold the aluminium conductors.

Motor type

Model name of the engine installed in the generator. Knowing this name, you can, if necessary, find detailed data on the engine and clarify how it meets your requirements. In addition, model data may be needed for some specific tasks, including maintenance and repair.

Note that modern generators are often equipped with branded engines from famous manufacturers: Honda, John Deere, Mitsubishi, Volvo, etc. Such engines are more expensive than similar units from little-known brands, but this is offset by higher quality and/or solid warranty conditions , and in many cases, the ease of finding spare parts and additional documentation (such as manuals for special maintenance and minor repairs).

Power

The operating power of the engine installed in the generator. Traditionally stated in horsepower; 1 HP approximately equal to 735 watts.

First of all, the rated power of the generator directly depends on this indicator (see above): in principle, it cannot be higher than the engine power, moreover, part of the engine power is spent on heat, friction and other losses. And the smaller the difference between these capacities, the higher the efficiency of the generator and the more economical it is. However high efficiency affects the cost, but this difference can pay off with regular use due to fuel savings.

Fuel consumption

Fuel consumption of a gasoline or diesel generator, and for combined models — when using gasoline (see "Fuel").

A more powerful engine inevitably means more fuel consumption; however, models with the same engine power may differ in this indicator. In such cases, it is worth considering that a model with a lower flow rate usually costs more, but this difference can quickly pay off, especially with regular use. In addition, knowing the fuel consumption and tank volume, you can determine how long one refueling will last; at the same time, in inverter models at partial load, the actual operating time may be noticeably higher than the theoretical one, see "Alternator" for details.

Continuous operation time

The time during which the generator is guaranteed to operate without interruption.

This parameter is indicated exclusively for liquid fuel models with a built-in tank, and according to the simplest formula: tank capacity divided by fuel consumption. However, in some models, data may be provided for a certain load level (which is specified in the notes); at a higher or lower load, the operating time will be shorter or longer, respectively. As for specific numbers, in most modern generators the operating time is up to 8 hours - this is quite enough for backup power and occasional use. More reputable models are capable of working for 8 – 12 hours, and an indicator of 13 hours and above is typical mainly for professional solutions.

We also note that, theoretically, many generators can be refueled without shutting down, but in practice it is better to take breaks and not exceed the stated time of continuous operation - this will avoid overheating and increased wear.

Number of sockets (230/400 V)

The total number of 230 and/or 400 V outlets provided in the generator design.

This number corresponds to the number of devices that can be simultaneously connected to the generator without the use of splitters, extension cords, etc. Moreover, if we are talking about a three-phase model (see “Output voltage”) with different types of sockets, it would not hurt to specify the number of both separately, since the set may be different in different models. For example, a unit for which 3 sockets are declared may have 1 three-phase connector and 2 single-phase, or 2 three-phase and 1 single-phase. In general, the most limited modern generators have only 1 outlet, although models with 2 are more common; and in the most powerful models this number can be 4 or higher.

Let us also recall that the possibilities for connecting various devices are limited not only by the number of sockets, but also by the rated power of the generator (for more details, see above).

Sockets 230 V

The number of 230 V sockets provided in the design of the generator, as well as the type of connectors used in such sockets.

The type of connector in this case is indicated by the maximum current that is allowed for the outlet — for example, "2 pcs at 16 A". The most popular options for 220-volt outlets are 16 A, 32 A and 63 A. We emphasize that the amperes in this designation are not the actual current that the generator can produce, but the outlet's own limitation; the actual value of the current strength is usually noticeably lower. Simply put, if, for example, the generator has a 32 A socket, the output current on it will not reach 32 A; and the specific number of amperes will depend on the rated and maximum power of the unit (see above). So, if for our example we take a rated power of 5 kW and a maximum of 6 kW, then such a generator can deliver less than 5 kW / 230 V = 22.7 A nominally and 6 kW / 230 V = 27 to a 230 V socket, 3 And at the peak. And if the power has to be divided between several outlets, then it, accordingly, will be even less.

As for specific types of connectors, the higher the current allowed for the outlet, the higher the requirements for its reliability and quality of protection. Thus, usually, smaller power plugs can be connected to higher power sockets (directly or through an adapter), but not vice versa. And if there are several sockets, by their type it...is possible to estimate with a certain certainty the distribution of the entire power of the generator between them: between two identical sockets, this power is usually divided equally, and more power is allocated to the socket for a larger number of amperes. However, specific details on this matter should be clarified in each case separately; also consider 400 V sockets, if available (see below).
Price graph
Konner&Sohnen Basic KSB 22i S often compared
Rato R2000iS often compared