Support E-Katalog!Get a Premium subscription for the price of a cup of coffee
Catalog   /   TVs & Video   /   TVs

Comparison Hisense 55U7NQ 55 " vs Hisense 55U6NQ 55 "

Add to comparison
Hisense 55U7NQ 55 "
Hisense 55U6NQ 55 "
Hisense 55U7NQ 55 "Hisense 55U6NQ 55 "
Compare prices 60Compare prices 76
TOP sellers
Built-in light sensor.
Built-in light sensor.
Size55 "55 "
Operating systemSmart TV (proprietary system)Smart TV (proprietary system)
Display
MatrixQLEDQLED
Backlight typeMini LEDMini LED
Screen surfaceglossgloss
Resolution3840x2160 px3840x2160 px
Upscalingup to 4Kup to 4K
Brightness500 cd/m²400 cd/m²
Static contrast5 000:14 000:1
Response time8 ms
Frame rate144 Hz60 Hz
HDR supportHDR10+, Dolby VisionHDR10+, Dolby Vision
IMAX Enhanced
AMD compatibleAMD FreeSync Premium Pro
Multimedia
Sound power40 W20 W
Number of speakers22
Subwoofer
Audio decodersDolby Atmos, DTSDolby Atmos, Dolby MS12, DTS X
Digital tuner
DVB-T2 (terrestrial)
DVB-C (cable)
DVB-S (satellite)
DVB-S2 (satellite)
DVB-T2 (terrestrial)
DVB-C (cable)
DVB-S (satellite)
DVB-S2 (satellite)
Features
Features
AirPlay 2
Wi-Fi 5 (802.11ac)
Miracast
Bluetooth
voice control
Amazon Alexa
Google Assistant
AirPlay 2
Wi-Fi 5 (802.11ac)
Miracast
Bluetooth v 4.2
voice control
Connectors
HDMI43
HDMI versionv 2.1v 2.0
HDMI technologiesALLM, VRR, eARCeARC, ALLM, VRR
Additional inputs
USB x2
LAN
composite AV input
USB x2
LAN
composite AV input
Outputs
mini-Jack (3.5 mm) headphones
optical
mini-Jack (3.5 mm) headphones
optical
General
Wall mountVESA 400x200 mmVESA 400x200 mm
Stand shapemonolithic2 separate legs
Power consumption200 W180 W
Energy efficiency class (new)EE
Dimensions (WxHxD)1231x781x295 mm1232x778x313 mm
Dimensions without stand (WxHxD)1231x717x79 mm1232x711x76 mm
Weight15.4 kg13.1 kg
Color
Added to E-Catalogjune 2024april 2024
Brief conclusions of the comparison tvs

Price graph
Hisense 55U7NQ often compared
Hisense 55U6NQ often compared
Glossary

Brightness

The maximum brightness of the image provided by the TV screen.

The image on the screen should be bright enough so that you do not have to strain your eyes unnecessarily to view it. However, too high brightness is undesirable — it will also lead to fatigue. The optimal brightness level depends on the surrounding conditions: the more intense the ambient light, the brighter the TV screen should be. So, on a sunny day, the screen may have to be “turned up” to the maximum, and in the evening, in dimmed light, a relatively dim image will be more comfortable. In addition note that large screens require higher brightness, since they are designed for a greater distance from the viewer.

Thus, the higher the number in this paragraph, the greater the margin of brightness this model has, the better it will show itself in intense ambient light. The lowest indicator sufficient for more or less comfortable viewing in any conditions is 300 cd/m² for models with a diagonal of up to 32", 400 cd/m² for models in the range of 32 – 55" and 600 cd/m² for large screens of 60" and more. In this case, the brightness margin anyway will not be superfluous. But with lower indicators, you may have to darken the room somewhat for comfortable viewing.

Static contrast

The level of static contrast provided by the TV screen.

Contrast in a general sense is the ratio in brightness between the brightest whites and the darkest blacks that the screen can produce. Other things being equal, the higher the screen contrast, the better the quality of colour reproduction and detail, the lower the likelihood that it will be impossible to see details in too bright or too dark areas of the image. Static contrast, on the other hand, describes the maximum difference in brightness that can be achieved within one frame without changing the brightness of the image — this is its difference from dynamic contrast (see below).

The values of static contrast are much lower than those of dynamic, but this characteristic is the most "honest". It is on it that the properties of the image seen on the screen at a particular moment depend, it is describes the basic properties of the screen, without taking into account the software tricks provided by the manufacturer in the hardware of the TV.

Response time

The response time can be described as the maximum time required for each pixel of the screen to change brightness, in other words, the longest time from the receipt of a control signal to the pixel until it switches to the specified mode. The actual switching time may be less — if the brightness changes slightly, it can be calculated in microseconds. However, it is the longest time that matters — it describes the guaranteed response speed of each pixel.

First of all, the frame rate is directly related to the response time (see the relevant paragraph): the lower the response time, the higher the frame rate can be provided on this sensor. However, the actual frame rate may be less than the theoretical maximum, it all depends on the TV. Also note that the overall image quality in dynamic scenes depends primarily on the frame rate. Therefore, we can say that the response time is an auxiliary parameter: the average user rarely needs this data, and in the specifications they are given mainly for advertising purposes.

Frame rate

The highest frame rate supported by the TV.

Note that in this case we are talking specifically about the screen’s own frame rate, without additional image processing (see “Index of dynamic scenes”). This frequency must be no lower than the frame rate in the video being played - otherwise there may be jerks, interference and other unpleasant phenomena that degrade the quality of the picture. In addition, the higher the frame rate, the smoother and smoother the movement in the frame will look, and the better the detail of moving objects will be. However, it is worth noting here that playback speed is often limited by the properties of the content, and not by the characteristics of the screen. For example, films are often recorded at a frequency of only 30 fps, or even 24 - 25 fps, while most modern TVs support frequencies of 50 or 60 Hz. This is enough even for viewing high-quality content in HD resolutions (speeds above 60 fps in such video are extremely rare), but there are also “faster” screens on the market: 100 Hz, 120 Hz and 144 Hz. Such speeds, as a rule, indicate a fairly high class of the screen; they also often imply the use of various technologies designed to improve the quality of dynamic scenes.

IMAX Enhanced

The IMAX Enhanced Seal of Conformity is awarded to televisions that meet the video device certification requirements of IMAX Corporation. It applies to streaming and Blu-Ray content shot with IMAX cameras or processed using special DMR (Digital Media Remastering) software. To qualify for IMAX Enhanced certification, your TV must have 4K resolution, 10-bit color, support HDR10 and HDR10+, and DTS:X audio. As a result, viewers get the opportunity to enjoy the immersive effect of an IMAX cinema at home.

AMD compatible

TV compatibility with special frame synchronization technologies used in AMD graphics cards.

You should pay attention to this parameter if you plan to use the TV as a gaming monitor for a PC or laptop with an AMD graphics adapter. Special timing technologies are used to match the screen refresh rate to the frame rate of the incoming video signal. Such a need arises for the reason that the frame rate issued by the graphics card can “float” when the load on the video adapter changes (this is especially true for demanding games); and if this frequency does not match the screen refresh rate – tears and other unwanted artifacts appear on the image.

The AMD technology used to eliminate this effect is called FreeSync. Nowadays, it is presented on the market in three versions — the original FreeSync and two extended ones:

– AMD FreeSync Premium Pro. The most advanced and functional version, formerly known as AMD FreeSync 2 HDR. In addition to refresh rate sync, it also includes support for HDR (see above), output at a frame rate of at least 120 Hz at Full HD resolution, as well as low frame rate compensation (LFC). The essence of LFC is that when the frame rate of the original video signal falls below the minimum frequency supported by the screen, the same frame is displayed on the screen several times, which allows to maintain the maximum smoothness of the “picture”.

— AMD FreeSync Premium. A somewha...t simplified version compared to FreeSync Premium Pro. It does not provide working with HDR, otherwise it is completely similar.

Sound power

The nominal power of the sound produced by the TV's sound system.

The larger the screen and the greater the estimated distance to the viewer, the more powerful the sound system must be in order to be heard normally. Manufacturers take this moment into account, moreover, most often they also provide a solid volume margin. So if a TV is bought for home viewing in a quiet, calm environment, you can not pay much attention to the sound power: it is guaranteed to be enough for such a usage. It makes sense to specifically look for models with high-power speakers for a noisy environment — for example, a cafe or other public space. Detailed recommendations on this matter can be found in special sources, but here we note that even in such cases, connecting external speakers can be a good alternative.

Subwoofer

The presence of a subwoofer as part of the TV sound system.

A subwoofer is a specialized speaker for bass and ultra-low frequencies. It makes the sound richer in the bass, which is especially useful when watching adventure films with appropriate sound effects (bumps, explosions), as well as concerts. It should noted that the specifications of built-in subwoofers are usually much more limited than those of external ones; so don't expect cinema-like bass from a TV audio system. However, the advantage in bass quality for such TVs (compared to models without a subwoofer) will still be noticeable.

Audio decoders

A decoder can be broadly described as a standard in which digital audio (often multi-channel) is recorded. For normal playback of such sound, it is necessary that the corresponding decoder is supported by the device. Dolby Digital and DTS were the first in multi-channel decoding, gradually improving and introducing new features. The final stage for 2020 is Dolby Atmos and DTS X decoders.

Dolby Atmos. A decoder that uses not a rigid distribution of sound across channels, but the processing of audio objects, due to which it can be used with almost any number of channels on a reproducing system — the sound will be divided between channels so that each audio object is heard as close as possible to its proper place. When using Dolby Atmos, ceiling speakers (or speakers facing the ceiling) are highly desirable. However, in extreme cases, you can do without them.

— DTS X. An analogue of the Dolby Atmos described above, when the sound is distributed not through individual channels, but through audio objects. The digital signal contains information about where (according to the director's intention) the object audible to the user should be and how it should move, and the processor of the reproducing device processes this information and determines exactly how the sound should be distributed over the available channels in order to achieve the required localization. Thanks to this, DTS X is not tied to a specific number of a...udio channels — there can be as many as you like, the system will automatically divide the sound into them, achieving the desired sound. Also note that this decoder allows you to separately adjust the volume of dialogues.