Dark mode
Укр|Eng|Рус
Ukraine
Catalog   /   Camping & Fishing   /   RC Models   /   RC Cars

Comparison Mioshi RC SportCar 2012-4 1:18 vs Traxxas XO-1 1:7

Add to comparison
Mioshi RC SportCar 2012-4 1:18
Traxxas XO-1 1:7
Mioshi RC SportCar 2012-4 1:18Traxxas XO-1 1:7
Outdated Product
from 14 999 ₴
Outdated Product
In boxRTR
Model scale1:181:7
Purpose (class)ring (track)ring (track)
Typeroadroad
Specs
Motorfor injectorsfor injectors
Motor modelбесколлекторный, Castle Creations Mamba Monster Extreme, Big Block 171
Max. speed160 km/h
Driverearall-wheel
Transmissionaluminium central shaft, steel differential gears
Shock absorbersoil-filled GTR with aluminium cases
Features
 
 
 
 
waterproof
dirt protection
centre differential
metal deck chassis
Power source
Power sourceNi-Mh batteryLi-Pol battery
Battery included++
Battery voltage4.8 V11.1 V
Battery capacity5 Ah
Battery model25C
Powered by two batteries
Transmitter
Radio frequency27.145 MHz2.4 GHz
Range10 m
Power source2xAA4хАА
General
Front track295 mm
Rear track300 mm
Base length404 mm
Ground clearance (ride height)15 mm
Materialplasticplastic
Dimensions (LxWxH)240x100x70 mm686x300x127.5 mm
Weight4670 g
Color
Added to E-Catalogmarch 2016december 2013

In box

RTR (Ready to Run) — the box contains a fully configured and ready-to-run model. Such models are equipped with a battery, a remote control, and a charger.

ATR (almost-ready to run). The model is almost completely ready for use, but some of the elements are still missing. The list of missing components can include both a battery and a remote control or charger. All of the above components may be missing at once. Missing parts must be purchased separately. Models in the ATR package are designed for advanced users, this package allows you to choose batteries or controls based on your own needs and requirements.

— PNP. the receiver and transmitter are not included in the package, and often there is no battery. Additionally, the PNP set may not contain control equipment. Radio models in the PNP configuration are designed for professionals who often use individual electronics. Usually, the design of the model itself is collapsible, which significantly increases the maintainability of the product. Many models sold in the PNP configuration are allowed to participate in prestigious exhibitions and competitions.

— K.I.T. For the most part, only body parts are provided in the kit. The kit has a lot in common with the designer, because from such a kit it is possible to assemble various options for the body of the radio model. The KIT package includes neither radio communicati...on modules, nor control equipment, nor electric motors. That is, the user will have to buy / manufacture all the hardware of the radio-controlled model on their own. Radio models in the KIT package are designed for advanced users. KIT kits are suitable for assembling advanced models, which are often used in prestigious exhibitions and sports competitions.

Model scale

The scale allows you to estimate the overall dimensions of the model — it describes the ratio of its dimensions to the dimensions of a full-size machine of a similar type (see below). For example, the length and width of a full-sized buggy average about 4 m and 2 m, respectively; this means that for a radio-controlled model on a scale of 1:10, these parameters will be 10 times smaller — about 40 cm and 20 cm (plus or minus).

Miniature scales are considered to be 1:24 or less ( 1:28 and 1:32), while in the largest scales it reaches 1:6( 1:5) — such models are not much smaller than children's cars (however, they are not intended to replace them). A small size is considered optimal for use in residential areas, a large one — in open areas. Most road models (see 'Type') are available in 1:10 scale, SUVs in 1:8, and larger scales are found in advanced internal combustion engine models (see 'Engine'). The most common scale options are 1:14, 1:16 and 1:18, which are found in both the low-cost and high-end segments.

Motor model

The name of the engine installed in the machine. Usually, knowing this name, you can easily find information about the features of the engine — both official manufacturer data and reviews from users — and determine how much you are satisfied with its characteristics. This can be very important when choosing a model for professional motorsports.

In addition to the name, this paragraph can also specify the type of electric motor (see "Engine") installed in the machine — collector or brushless.

The collector design of the electric motor can be called classical. It allows you to create fairly light, compact, inexpensive motors, which are also easily repaired. The disadvantages of this option are relatively low efficiency, a tendency to spark (especially when overheated), as well as less durability than brushless models. In addition, with a collector motor, it is more difficult to ensure high speed. As a result, this option is typical for entry-level and middle-level models (relatively slow).

Brushless motors are considered more advanced than brushed motors: they are more powerful, more economical, more durable, better protected from pollution and well suited for overclocking to high speeds. On the other hand, such engines are much more expensive, and the complexity of the design does not allow you to repair the motor on your own. In light of all this, brushless motors are used primarily in advanced high-speed cars; the presence of such a motor is an ind...icator of a rather high class model.

Some models of radio-controlled cars can be produced in two versions, differing only in the type of electric motor.

Max. speed

The highest speed that the machine can develop. Usually, this parameter is indicated for certain "perfect conditions": a flat track, high-quality fuel or a full battery charge (depending on the type of engine, see above), etc. Real figures tend to be somewhat lower; however, different models can be compared with each other according to this characteristic.

High maximum speed is important primarily for "racing" cars (ring and short-course, see above); in stunt and drift models, it does not play a decisive role. Also, you should pay attention to the maximum speed values when buying an amateur model for entertainment — here you need to take into account the features of its application. For example, if the machine is intended for a 3-4 year old child as a toy in an apartment, high speed will not be an advantage, but a disadvantage (especially since the cost of the “apparatus” directly depends on its speed).

Drive

— Full. As the name implies, in such models, traction from the engine is transmitted to all 4 wheels. The main advantage of this scheme is its high cross-country ability: the machine keeps well on difficult terrain, and even getting stuck with a pair of wheels in the air is not critical for it. Also, four-wheel drive can be used for drifting (see "Appointment (class)"), although it loses a little in this role to the rear one; however, a lesser tendency to drift can be an advantage. Its main disadvantage is the rather high cost associated with the difficulties in production. In addition, 4WD vehicles tend to be less fuel efficient than "single wheel drive" vehicles.

Rear. Models with power transmission from the engine to the rear pair of wheels. This scheme is quite unstable and requires careful control at high speeds — if you turn too sharply, the car easily goes into a skid. On the other hand, it is precisely because of the instability that this option is considered optimal for drift racing, and the design of the rear-wheel drive is very simple, reliable and inexpensive. As a result, most non-4WD RC models use it.

Front. The front-wheel drive has a high degree of stability: you can only send the car into a skid intentionally (and then you need to try hard), and the withdrawal from it is extremely simple. At the same time, stability is not...always an advantage — for example, in drifting, it only creates additional problems. In addition, the design of such models is quite complex due to the need to combine the drive from the engines and steering on the same pair of wheels; as a result, in terms of price, reliability and ease of maintenance, they lose to rear-wheel drive. Therefore, front-wheel drive is not widely used in radio-controlled cars.

Transmission

Type, model and other features of the transmission installed in the car. For details on the meaning of this parameter, see "Motor model".

Shock absorbers

Type, model and other features of shock absorbers installed in the car. For details on the meaning of this parameter, see "Motor model".

Features

Protection against moisture. The presence of protection in the design of the machine, which prevents moisture from entering the sensitive elements of the structure and the corresponding unpleasant consequences (short circuits, corrosion, water hammer, etc.). This feature is practically mandatory for outdoor models, especially off-road types with internal combustion engines (see above). However, the specific degree of such protection differs significantly in different cases: one model can be designed, for example, for a maximum of splashes from wet asphalt or light rain, while the other will calmly survive driving through a puddle “hood-deep”. Therefore, this point should be clarified according to the official data of the manufacturer.

Protection against dirt. Protection to prevent dust and dirt from entering parts that require cleanliness. Similar in many respects to the water protection described above — in particular, it is very important for outdoor use and can vary significantly from model to model.

Centre differential. The presence in the design of the machine of a differential located between the front and rear pair of wheels and distributing torque from the engine between the front and rear axles. By definition, it is found only in models with all-wheel drive (see above). The main function of this mechanism is similar to cross-axl...e differentials — it allows the wheels, in this case the front and rear, to rotate at different speeds so that the chassis and tyres do not experience increased loads. A similar need arises, in particular, when cornering at low speed. In addition, the centre differential improves patency: when one of the pairs of wheels slips, it distributes the torque so that most of it falls on the wheels that retain traction.

Metal main pair. The main pair is called two gears responsible for transmitting torque from the engine to the transmission: one of them is located on the engine shaft, the second — on the transmission shaft. This is one of the most important structural elements of the machine, which is subjected to significant loads during use. The main pairs made of metal are much stronger and more reliable than plastic ones; if you are purchasing a model for riding in difficult conditions (for example, a short course or tricks, see "Purpose (class)"), the presence of such equipment will be very desirable. At the same time, for entertainment purposes, it is rather an excess — after all, metal gears are more expensive than plastic ones.

Anti-roll bars. The presence in the design of the machine of special devices that prevent the tipping of the structure to one side, in particular during sharp turns: during cornering, the stabilizer distributes the load on the wheels in such a way as to reduce chassis roll. However, this is not the only purpose of these parts — stabilizers of different stiffness are also a tool for distributing the grip balance between the front and rear axles. For example, if the front stabilizer is softer than the rear, the grip of the front axle will be higher, which ensures good steering, but reduces the sensitivity of the control; with a softer rear stabilizer — on the contrary. These points are described in more detail in special sources. It is worth noting that stabilizers are not a 100% guarantee against a coup — however, the likelihood of such an event is significantly reduced if they are present.

Metal deck chassis. The deck is the basis of the chassis of the machine, the frame on which the engine, transmission and body are placed. The high strength of the deck is important for models that are subjected to significant stress during riding, for example, when used for short corsets (see "Purpose (class)"). Aluminium alloys are often used as a material for metal decks in modern cars — they combine good strength and low weight. However such materials also affect the cost of the model, respectively.

Opening doors. Opening doors enhance the similarity of radio-controlled cars with real cars. You can put a toy driver behind the wheel of such cars in miniature, and passengers in the passenger compartment. Also, through the doors, access to the interior of the radio-controlled car is provided.

— Light effects. The presence of various lighting effects in the model: headlights, parking lights, flashing beacons (flashing lights), bottom lighting, etc. Such equipment not only makes the machine look like a real car, but also makes it more noticeable to others and reduces the likelihood of unpleasant incidents. At the same time, for advanced models, these moments do not play a key role, so lighting effects are found mainly in inexpensive entertainment cars.

— Sound effects. The presence in the model of various sound effects — for example, a horn, a siren, the sound of a powerful engine, etc.; sometimes there are even built-in melodies. To play sounds, usually, a small speaker is provided. This function is purely for entertainment purposes and is found only in simple and inexpensive models designed for the younger age group.

Driver. A toy pilot seated behind the wheel of a radio-controlled car. The presence of a pilot allows you to give free rein to your imagination - driving a car from a distance, you can imagine that it is being driven by a little man.

Power source

The type of power source used in a machine with an electric motor (see “Motor”).

- AA. Replaceable elements of a standard size, popularly known as “pen-light batteries”. The main advantage of battery-powered cars over battery-powered cars is the ability to quickly replace dead batteries. On the other hand, the power of such power supply is quite modest, so they are found mainly in models for younger people.

- AAA. Such elements are almost completely similar to the AA described above and outwardly differ from them only in their reduced size (which is reflected in their common name - “little finger”).

- Ni-Mh. Specialized batteries made using nickel-metal hydride technology like other batteries ( Li-Pol, Li-Ion, Ni-Cd, LiFePO4, branded) are superior to replacement batteries in capacity and compactness and are better suited for powerful electric motors. Ni-Mh batteries themselves are notable primarily for their ability to withstand high charge and discharge currents without consequences - the first is important given the “gluttony” of electric motors, the second has a positive effect on the charging speed. In addition, such batteries are resistant to lo...w temperatures, do not have a “memory effect”, and are relatively inexpensive. At the same time, they are inferior to Li-Pol elements in terms of capacity (with the same dimensions).

- Li-Pol. Specialized batteries made using lithium-polymer technology. For more information on specialized batteries in general, see above (Ni-Mh). Li-Pol technology itself makes it possible to create batteries with high capacity, small size and weight, and without the “memory effect,” however, it is quite expensive.

- Ni-Cd. A relatively old battery manufacturing technology, the predecessor of the Ni-Mh described above. The common features of these technologies are resistance to high charge and discharge currents, low temperatures, and low cost. True, nickel-cadmium batteries are subject to the “memory effect” - a decrease in capacity when charging an incompletely discharged battery; however, this can be corrected by using advanced chargers and following operating instructions. But the clear disadvantage of this option is considered to be environmental unsafety during production and disposal; This is typical for all batteries, but it is most relevant for Ni-Cd cells, so they are used less and less.

— Li-Ion. Batteries made using lithium-ion technology and not belonging to any of the universal standard sizes (like AA). Lithium-ion batteries are practically not subject to the “memory effect”, are easy to use and charge fairly quickly. Their disadvantages include a higher price and less resistance to high and low temperatures.

— LiFePO4. Lithium iron phosphate batteries are actually a modification of lithium-ion batteries (see the corresponding paragraph), developed to eliminate some of the shortcomings of the original technology. They are notable above all for their high reliability and safety: the likelihood of a battery “exploding” when overloaded is reduced to almost zero, and in general LiFePO4 can cope with high peak loads without any problems. In addition, they are quite resistant to cold and maintain operating voltage almost until discharge. The main disadvantage of this type is its slightly smaller capacity.

— Branded battery. This category includes all specialized batteries (see subparagraph “Ni-Mh” above), for which the manufacturer did not indicate the manufacturing technology. We also note that if “ordinary” specialized batteries can be standard and can be used in different models of radio-controlled equipment, then branded batteries often have an original design and are designed only for cars from one manufacturer.
Traxxas XO-1 1:7 often compared