Dark mode
Укр|Eng|Рус
Ukraine
Catalog   /   Computing   /   Monitors

Comparison AOC C24G1 24 " black vs LG 25UM58 25 "

Add to comparison
AOC C24G1 24 "  black
LG 25UM58 25 "
AOC C24G1 24 " blackLG 25UM58 25 "
from 7 405 ₴
Outdated Product
Compare prices 1
User reviews
TOP sellers
out of stock
Product typegamingmonitor
Size24 "25 "
Screen
Curved screen1500R
Panel type*VAAH-IPS
Surface treatmentmattematte
Resolution1920x1080 (16:9)2560x1080 (21:9)
Pixel size0.27 mm0.23 mm
Response time (GtG)4 ms5 ms
Refresh rate144 Hz60 Hz
Vertical viewing angle178 °178 °
Horizontal viewing angle178 °178 °
Brightness250 cd/m²250 cd/m²
Static contrast3 000:11 000:1
Dynamic Contrast80 000 000:1500 000:1
Colour depth16.7 million colours (8 bits)16.7 million colours (8 bits)
Colour space (sRGB)99 %
Connection
Video transmission
VGA
DisplayPort v 1.2
2xHDMI
v 1.4
 
 
2xHDMI
 
Connectors (optional)
mini-Jack output (3.5 mm)
mini-Jack output (3.5 mm)
Features
Features
Flicker-Free
AMD FreeSync Premium
Flicker-Free
 
Screen swivel
Height adjustment
General
Wall mountVESA 100x100mmVESA 75x75mm
Power consumption20 W27 W
Dimensions (WxHxD)537x513x245 mm609x383x188 mm
Weight4.46 kg4 kg
Color
Added to E-Catalogoctober 2018march 2016

Product type

— Monitor. In this case, we mean monitors designed mainly for classic use — as a screen for a personal computer. Their functionality can be quite diverse — from entry-level screens with 1-2 inputs for connection to multifunctional models with built-in speakers, TV tuners, remote controls, etc. The same applies to the diagonal. Most traditional monitors are in the 22-30" range (these sizes are currently considered optimal for screens whose distance is determined by the width of the desktop), but there are also large-format devices whose diagonal can exceed 32".

Portable monitor. A separate caste of monitors designed to connect to laptops. They are distinguished by small diagonal sizes, not exceeding 18", a thin format and the absence of a stand, as a result of which they look like tablets.

Game monitor. Monitors considered optimal for gaming. These are not necessarily devices specially designed for this application (although there are some); however, all gaming monitors have a number of features that gamers will surely appreciate. Firstly, the resolution (see below) in such models is not lower than Full HD. Secondly, the matrices have a low response time — less than 5 ms, which allows high-quality display of dynamic scenes; and the frame rate often reaches 120 Hz or even more (although there are quite modest values). Thirdly, devices of this type often have special gaming (see...below) and similar features — in particular, most gaming monitors are compatible with FreeSync and/or G-Sync technologies (see "Features").

LCD panel. One of the key features that distinguish LCD panels from conventional monitors is the wide variety of connectors: in addition to video outputs, it includes auxiliary ports such as LAN or RS-232 (see "Connectors (Optional)"). It is also believed that the LCD panel must be hung on the wall without fail, but this has its own specifics. Many devices of this type are really made only for wall installation, and some models can be combined into a video wall that broadcasts one image to several screens. But besides this, there are solutions equipped with stands and allowing desktop use (and sometimes even originally designed for it). At the same time, the first variety, "purely wall-mounted", can have almost any diagonal — including modest 21 – 22 "; but the dimensions of "desktop" panels start at 32", moreover, they most often have advanced matrices like IPS. Anyway, such screens are used mainly in rather specific areas. So, wall mounting is convenient for organizing information boards at stations, airports, shopping centers, for use at exhibition stands, conference rooms, etc. Desktop models are useful for those for whom large size and high image quality are of key importance . Also among them there are many devices with touch screens, which further expands the user experience.

— Plasma panel. These types of devices are similar in many ways to the LCD panels described above, but they also have some key differences. The main one is the technology used for the screen: instead of a liquid crystal matrix, plasma panels use cells filled with a special gas and covered with a luminous substance — a phosphor. This technology provides very high image quality, with deep colour reproduction and contrast. At the same time, it is not easy to create a small plasma cell, which is why the pixels on this type of screens have more stringent restrictions on the minimum size. As a result, plasma panels, in principle, are never small — 42 "is considered almost the minimum size for such a screen. In addition, the reverse side of the described advantages is also a slightly shorter service life and higher cost than LCD matrices. As a result," plasma" has not received much distribution, such devices are bought mainly not for "public", but for personal use — for example, as a home theater screen or as equipment for an advanced gamer.

Video wall. Models designed to build video walls. Such a wall is an array of numerous closely arranged screens that can work in concert and produce a large overall image; each screen is responsible for its own fragment of the picture. Such designs are used, in particular, at concerts and other public events, where there are no longer enough separate screens. The main feature of monitors for video walls is a very thin frame — due to this, the boundaries between the segments are almost invisible, and the image is perceived as a whole.

Information display. Narrow-purpose equipment, assuming a stationary method of installation. Such displays are mounted on the wall, built into special niches or openings. They are intended to work as digital signage, broadcast advertising materials, play various video content. Individual instances of information displays can support touch control, have a pre-installed Smart operating system and other "smart" features. As a rule, specialized proprietary software is used to control the operation of such equipment.

Size

Diagonal size of the monitor matrix, in inches.

This parameter is one of the most important for any screen — it determines the total size of its working area. In general, it is believed that larger monitors are more comfortable: a large screen allows you to see a large fragment of text, images, etc. without having to scroll the "picture". On the other hand, the diagonal directly affects the dimensions, weight and cost of the monitor. In addition, it is worth remembering that screens with the same diagonal can have different aspect ratios and different specializations: for example, widescreen models are convenient for playing games and watching movies, while classic 4:3 or 5:4 solutions are preferable for working with documents. Now there are monitors of different diagonals on the market, among them the most popular are: 19–20", 22", 23 – 24", 25 – 26", 27 – 28", 29 – 30", 32", 34" and more.

Curved screen

The presence of a curved screen in the monitor design.

Such a screen has the left and right edges curved forward - it is believed that this shape significantly improves perception compared to a flat surface. At the same time, it makes sense to provide this feature only on fairly large diagonals - at least 30"; therefore, it is typical mainly for high-end models. It is also worth noting that in order to take advantage of all the advantages of a curved screen, you need to look at it from a certain point - at the optimal distance, strictly in the center; however, for computer monitors this is usually not a problem.

The main parameter of a curved screen is the radius of curvature. It is indicated in millimeters along the radius of a circle, the bend of which corresponds to the bend of the monitor: for example, the designation 1800R indicates a radius of 1.8 m.

The smaller the number in this designation, the more curved the screen (all other things being equal). At the same time, some manufacturers claim that the ideal curvature value is 1000R: supposedly, it is with this curvature of the screen that the image on it turns out to be as close as possible to a person’s natural field of vision, and the closer the curvature of the monitor is to 1000R, the better the viewing experience. However, in practice a lot depends on personal preference; and when viewed from a long distance (exceeding the radius of curvature by on...e and a half times or more), all the advantages of a curved screen are lost.

Panel type

The technology by which the monitor matrix is made.

TN+film. The oldest and most common technology for manufacturing matrices. The original TN (Twisted Nematic) monitors have a low response time and low cost, but the image quality is average. So, the colour quality is not high, and the perfect black colour cannot be reproduced at all. In addition, the original TN technology provides relatively small viewing angles. To correct this situation, a special film is applied to the surface of the matrix. These matrices received the name "TN + film". Monitors with such a matrix are widespread and inexpensive. They are well suited for undemanding users both at home and in the office, and gamers will appreciate the fast response time.

*VA(Vertical Alignment, options: MVA, PVA, Super MVA, Super PVA). A kind of transitional option between expensive and high-quality IPS and low-cost TN. Provide sufficiently high-quality colour reproduction, including black colour, viewing angles can reach 178°. The main disadvantage of VA matrices is the significant response time (especially for MVA monitors), due to which such monitors are relatively poorly suited for watching videos and dynamic games. This shortcoming is gradually being eliminated, and the latest models of VA monitors are approaching TN...+ film in response time.

— IPS. Initially, IPS technology was created for high-end monitors (in particular, "designer"), the key parameters for which were the quality of colour reproduction and a wide colour gamut. With all these advantages, the original IPS matrices also had a number of serious drawbacks — first of all, low response speed and impressive cost. Thus, many modifications of the IPS technology have been developed, designed to compensate for these shortcomings to one degree or another.

OLED. Monitors with screens using organic light emitting diodes — OLED. Such LEDs can be used both to illuminate a traditional matrix, and as elements from which a screen is built. In the first case, the advantages of OLED over traditional LED backlighting are compactness, extremely low power consumption, backlight uniformity, as well as excellent brightness and contrast ratios. And in matrices, consisting entirely of OLED, these advantages are even more pronounced. The main disadvantages of OLED monitors are the high price (which, however, is constantly decreasing as the technology develops and improves), as well as the susceptibility of organic pixels to burn-in when broadcasting static images for a long time or pictures with static elements (toolbar, clock, etc.).

QLED. Monitors built using quantum dot technology (QLED). This technology can be used in matrices of various types. It involves replacing a set of several colour filters used in classic matrices with a special thin-film coating based on nanoparticles, and traditional white LEDs with blue ones. This allows you to achieve higher brightness, colour saturation and colour quality at the same time as reducing the thickness and reducing power consumption. In addition, QLED is well suited for creating curved screens. The flip side of these benefits is the high price.

QD-OLED. A kind of hybrid version of matrices that combine “quantum dots” (Quantum Dot) and organic light-emitting diodes (OLED) in one bottle. The technology takes the best from QLED and OLED: it is based on blue LEDs, self-luminous pixels (instead of external backlighting) and “quantum dots”, which play the role of color filters, but at the same time practically do not attenuate the light (unlike traditional filters) . Thanks to the use of a number of advanced solutions, the creators managed to achieve very impressive characteristics, significantly superior to many other OLED matrices. Among them are high peak brightness from 1000 nits (cd/m²), excellent contrast and black depth, as well as an expanded color gamut (over 120% of the DCI P3 gamut). Such matrices are found mainly in expensive advanced monitors with a large screen diagonal.

— AHVA. A type of matrix created by AU Optronics (a joint venture between Acer and BenQ) as a solution similar to modern IPS. Among the key advantages of this option over analogues is the almost complete absence of colour distortions at all viewing angles.

– PLS (Plane to Line Switching). This type of matrix was developed by Samsung engineers. It is based on the familiar IPS technology. According to some parameters, namely: the brightness and contrast of PLS exceeds IPS by 10%. The main goal of creating a new type of screens was to reduce the cost of the matrix, according to the developer, the production cost was reduced by 15%, which will positively affect the final price of monitors in comparison with IPS counterparts.

— IGZO. Technology introduced by Sharp in 2012. The key difference between IGZO and classic LCD matrices is that for the active layer (responsible for creating the image) it uses not amorphous silicon, but a semiconductor material based on indium gallium oxide and zinc oxide. This makes it possible to create screens with extremely fast response times and high pixel densities, and the technology is considered well suited for ultra-high resolution screens. With all this, the colour rendering characteristics allow the use of IGZO monitors even in the professional field, and the power consumption is very low. The main disadvantage of this option is the high cost.

— UV2A. An LCD display technology developed by Sharp and introduced in 2009. One of the key features of UV2A matrices is that they are based on liquid crystals that are sensitive to ultraviolet light. And it is UV radiation that is used as a control signal — it ensures that the crystals turn in the right direction to form an image. The technical features of such systems are such that the position of individual crystals can be controlled with extremely high accuracy — up to several picometers (with the size of the crystals themselves about 2 nm). According to the manufacturer, this provides two key benefits: no backlight "leakage" and improved light transmission with "open" crystals. The first allows you to achieve very deep and rich blacks, the second provides excellent brightness with low power consumption, and together these two features make it possible to create screens with a very high static contrast ratio — up to 5000: 1. At the same time, we note that the actual contrast characteristics in UV2A monitors can be noticeably more modest — it all depends on the features of a particular matrix and the characteristics that the manufacturer was able or considered necessary to provide.

— Mini LED IPS. A variation on the theme of the familiar IPS-matrix, which is illuminated by an array of reduced LEDs. The small caliber of individual light sources (of the order of 100-200 microns) makes it possible to form a much larger number of zones of controlled local dimming of the screen. Together, this delivers improved brightness, contrast, colour saturation, and black depth, and raises the bar for High Dynamic Range (HDR) technology.

— Mini LED VA. A variety of VA-matrices with a Mini LED backlight system. It consists of many tiny LEDs, which, due to their number, form many times more local screen dimming zones than standard canvases. As a result, Mini LED VA panels boast improved colour reproduction, impressive black depth, and multiple performance improvements in HDR content.

— Mini LED QLED. Behind the plane of the QLED panel in monitors with a Mini LED backlight system are thousands of miniature LEDs no larger than 200 microns in size, which divide the screen into a great many zones with controlled local dimming. They are individually dimmable, allowing full display of HDR content with bright light and deepest black levels.

Resolution

The native resolution of the monitor. Ideally, the resolution of the video signal should be the same, then the quality of the image on the screen will be maximum.

In general, the higher the resolution, the higher the detail and the more advanced the screen is, but the more expensive it will cost (ceteris paribus) and the more power the graphics card will need to work properly at that resolution. As for specific values, they are quite diverse in modern monitors, but all resolutions can be divided into several general categories:

HD (720). Screens suitable for HD video with a resolution of 1280x720. Note that this category also includes models with a resolution of 1024x768 — this figure is somewhat less than necessary to display HD in its original size, but the quality of the HD picture on such a screen still turns out to be quite high. The most popular option among HD monitors is 1366x768, there are also models 1280x768, 1280x800 and non-widescreen (5:3) 1280x1024.

Full HD (1080). Full HD monitors. The classic, most popular version of this resolution is 1920x1080 ( 16:9 format), however, there are other options among monitors, including such specific ones as ultra-widescreen (32:9) 3840x1080, as well as 1600x1200 (a 1920x1080 frame “does not fit into it”) ” in width, but this resolution is stil...l commonly referred to as Full HD). To date, Full HD is a good compromise between image quality, screen cost and graphics card requirements. As a result, it is this format that is most popular among modern monitors.

Quad HD. A kind of intermediate option between the popular Full HD and advanced demanding Ultra HD 4K. It covers resolutions from 1920x1440 to 3200x2400, although most modern Quad HD monitors fit into a narrower range — from 2560x1440 to 3840x1600. Such a screen can be a good option for those who “Full HD is not enough, but 4K is a lot.”

— Ultra HD (4K). This standard assumes a horizontal frame size of approximately 4000 pixels, but specific resolutions may vary. Popular options found in monitors include 3840x2160, 4096x2160, and 4096x2304. Overall, UHD 4K gives you 4 times more pixels on screen than Full HD; such resolutions are typical for high-end monitors and are most often combined with a large diagonal — from 27 "(although there are exceptions).

Ultra HD (5K). An even more advanced standard than UHD 4K, which assumes a horizontal frame size of about 5000 pixels — for example, 5120x2160. It is used extremely rarely, mainly in top professional screens.

— 8K. Further, after 5K, the development of HD standards, which provides for a frame with a horizontal size of about 8000 — for example, one of the 8K resolution options in monitors is 7680x4320. Allows you to get extremely clear and detailed images, but such high-resolution monitors are very expensive, and it is not so easy to find a signal source in such a resolution. Therefore, only single models of 8K monitors are currently on the market.

Pixel size

The size of one dot (pixel) on a monitor screen. This parameter is related to the maximum resolution of the monitor and its diagonal size — the higher the resolution, the smaller the pixel size (with the same diagonal) and vice versa, the larger the diagonal, the larger the size of one pixel (with the same resolution). The smaller the size of one pixel, the clearer the image will be displayed by the monitor, the less grainy it will be noticeable, which is especially important on large monitors. On the other hand, a small pixel size creates discomfort when working with fine details and text — this mainly applies to monitors with a small diagonal.

Response time (GtG)

The time each individual pixel on the monitor takes to switch from one state to another. The lower the response time, the faster the matrix responds to the control signal, resulting in less delay and better image quality in dynamic scenes.

Note that in this case, the gray-to-gray method is used (the time it takes to switch from 10% gray to 90% gray). Pay attention to this parameter if the monitor is specifically purchased for fast-paced games, movie watching, or other applications involving quick screen movements. However, there’s no need to chase the fastest models. It’s not often possible to discern the difference between 1 ms and 5 ms. For most scenarios, monitors with a 4 ms response time will suffice. In any case, it’s best to rely on live impressions for a true comparison.

Refresh rate

The maximum frame rate supported by the monitor at the recommended (maximum) resolution.

The higher the frame rate, the smoother the movement on the screen will look, the less noticeable jerks and blurring will be on it. Of course, the actual image quality also depends on the video signal, but for normal viewing of video at a high frame rate, the monitor must also support it.

When choosing this option, keep in mind that at lower resolutions than the maximum, the supported frame rate may be higher. For example, a model with a 1920x1080 matrix and a claimed frame rate of 60 Hz at a reduced resolution can give 75 Hz; but the 75Hz frame rate is only listed in the specs if it is supported at the monitor's native (maximum) resolution.

Also note that a high frame rate is especially important for gaming models (see "Type"). In most of them, this figure is 120 Hz and higher; monitors with a frequency of 144 Hz are considered the best option in terms of price and quality, however, there are also higher values — 165 Hz and 240 Hz. And monitors at 100 Hz can be both inexpensive gaming models and advanced home ones.

You can evaluate all the frame rates at which this monitor is capable of...operating by the vertical frequency claimed in the specifications (see below).

Static contrast

Static contrast provided by the monitor screen.

This value describes the difference between the brightest whites and darkest blacks that the screen is capable of producing. In this case, unlike dynamic contrast (see below), the difference is indicated on the condition that the brightness of the screen backlight remains unchanged. In other words, this is the contrast that is guaranteed to be achievable within one frame. Static contrast is inevitably lower than dynamic. However, it is she who describes the basic capabilities of the screen.

The minimum static contrast ratio for tolerable image quality is considered to be 250:1, but even the most modest modern monitors give out about 400:1 (and a value of 1000:1 is not the highest class), and in high-end models this figure can reach 2000:1 and even more. .
Price graph
AOC C24G1 often compared
LG 25UM58 often compared