Укр|Eng|Рус
Ukraine
Catalog   /   Computing   /   Components   /   CPUs

Comparison AMD Ryzen 3 Picasso 3200G BOX vs AMD Ryzen 5 Raven Ridge 2400G BOX

Add to comparison
AMD Ryzen 3 Picasso 3200G BOX
AMD Ryzen 5 Raven Ridge 2400G BOX
AMD Ryzen 3 Picasso 3200G BOXAMD Ryzen 5 Raven Ridge 2400G BOX
Compare prices 70
from 14 400 ₴
Outdated Product
User reviews
TOP sellers
Main
The frequency of the GPU is 1250 MHz.
Eight streams. Compatible with older AM4 chipsets after BIOS update. Unlocked multiplier even on the video core.
SeriesRyzen 3Ryzen 5
Code namePicasso (Zen+)Raven Ridge (Zen)
SocketAMD AM4AMD AM4
Lithography12 nm14 nm
In boxBOX (fan)BOX (fan)
Cores and Threads
Cores4 cores4 cores
Threads4 threads8 threads
Multithreading
Speed
Clock speed3.6 GHz3.6 GHz
TurboBoost / TurboCore4 GHz3.9 GHz
Cache
L1 cache384 KB384 KB
L2 cache2048 KB2048 KB
L3 cache4 MB4 MB
Specs
IGPRadeon Vega 8Radeon Vega 11
TDP65 W65 W
Instruction
MMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AES, AVX, AVX2 /BMI, BMI1, BMI2, SHA, F16C, FMA3, AMD64, EVP, AMD-V, SMAP, SMEP/
MMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AES, AVX, AVX2 /BMI, BMI1, BMI2, SHA, F16C, FMA3, AMD64, EVP, AMD-V, SMAP, SMEP/
Multiplier36
Free multiplier
PCI Express3.03.0
Max. operating temperature95 °С105 °С
Passmark CPU Mark7160 score(s)9285 score(s)
Geekbench 413398 score(s)14057 score(s)
Cinebench R15856 score(s)
Memory
Max. DDR4 speed2933 MHz2933 MHz
Channels22
Added to E-Catalogjune 2019february 2018

Series

The series to which the processor belongs.

A series usually combines chips that are similar in general level, characteristics, features and purpose — for example, low-cost processors with low power consumption, mid-range models with advanced graphics capabilities, etc. It is most convenient to start choosing a processor by determining the series that is optimal for you fit; however, it is worth considering that chips of the same series may belong to different generations.

Here are the most popular series of processors from Intel:

Celeron. Low-cost-level processors, the most simple and inexpensive consumer-level desktop chips from Intel, with the appropriate characteristics. They can combine a CPU with an integrated graphics module.

Pentium. A series of low-cost desktop processors from Intel, somewhat more advanced than the Celeron.

Core i3. A series of entry-level and mid-level processors, the most budgetary series in the Core ix family. They are based on a dual-core architecture, have a third-level cache and an integrated graphics processor.

Core i5. A series of mid-range processors, both in general and in the Core ix family. The architecture is dual or quad-core, have a third-level cache, many models are also equipped with an integrated graphics chip....>
Core i7. A series of performant processors; before the introduction of the i9 line in May 2017, they were the most advanced in the Core ix family. They have at least 4 cores(up to 8 in top solutions), a volumetric level 3 cache and integrated graphics.

Core i9. High performance desktop processors introduced in 2017; the most advanced Core ix series and the most powerful line of desktop CPUs at the time of release. They have from 10 cores (from 6 in mobile versions).

Xeon. A series of high-performance processors designed primarily for servers. Well suited for multiprocessor systems. The number of cores is 2, 4 or 6, many models have a third-level cache.

AMD's most popular CPU series these days include Ryzen 3, Ryzen 5, Ryzen 7, Ryzen 9, Ryzen Threadripper, EPYC.

— A series. A series of so-called hybrid processors from AMD, also called APU — Accelerated Processing Unit. They are mainly high-end solutions with advanced integrated graphics, the capabilities of which in some models are comparable to discrete graphics cards. In particular, for the latest A-Series processors, the possibility of full-fledged work with many popular online games at maximum settings is claimed.

EPIC. A series of professional processors from AMD, designed primarily for servers; are positioned, in particular, as solutions optimized for use in cloud services. Built on the Zen microarchitecture, just like desktop Ryzen (see below).

FX. A family of high-end performance processors from AMD, the world's first series to introduce an octa-core processor for PCs. However, there are relatively modest quad-core ones. Another feature is liquid cooling, which is included in the standard delivery of some models: classic air cooling is not enough given the high power and the corresponding TDP (see below).

— AMD Fusion. The entire Fusion processor family was originally created as integrated graphics devices, combining a central processing unit and a graphics card in one chip; such chips are called APU — Accelerated Processing Unit, and their graphics performance is often comparable to inexpensive discrete graphics cards. Modern Fusion processors are marked with the letter A and an even number — from A4 to A12; the higher the number, the more advanced the series is.

— Athlon. The Athlon marking itself is used in many processor families from AMD, including those that are completely obsolete. Nowadays, this name can mean both Athlon X4 and "regular" Athlons with the code name specified — usually Bristol Ridge or Raven Ridge. All these CPUs are designed mainly for consumer-level systems. At the same time, X4 chips were released in 2015 and are positioned as relatively inexpensive and at the same time performant solutions for the FM + socket. Athlon Bristol Ridge processors appeared in 2016 and became the latest series of "athlons" based on the Excavator microarchitecture (28-nm process technology). The next generation, Raven Ridge, used the Zen microarchitecture, which introduced a number of key improvements — in particular, a 14nm process technology and multi-threading support. Both of these series belong to the middle level.

Ryzen 3. The third series of processors from AMD built on the Zen microarchitecture (after Ryzen 7 and Ryzen 5). The first chips of this series were released in the summer of 2017 and became the most low-cost solutions among all Ryzen. They are produced using the same technologies as the older series, however, half of the computing cores are deactivated in Ryzen 3. Nevertheless, this line includes quite performant devices, including those designed for gaming configurations and workstations.

Ryzen 5. A series of processors from AMD, built on the Zen microarchitecture. The second series on this architecture, released in April 2017 as a more affordable alternative to Ryzen 7 chips. Ryzen 5 chips have slightly more modest performance characteristics (in particular, a lower clock speed and, in some models, L3 cache size). Otherwise, they are completely similar to the "sevens" and are also positioned as high-performance chips for gaming and workstations. See "Ryzen 7" below for details.

Ryzen 7. AMD's first series of processors based on the Zen microarchitecture. It was introduced in March 2017. In general, Ryzen chips (all series) are promoted as high-end solutions for gamers, developers, graphic designers and video editors. One of the main differences between Zen and previous microarchitectures was the use of simultaneous multithreading (see "SMT (multithreading)"), due to which the number of operations per clock was significantly increased at the same clock frequency. In addition, each core received its own floating point unit, the speed of the first level cache has increased, and the L3 cache in Ryzen 7 is nominally 16 MB.

Ryzen 9. A series introduced in 2019 with the release of third-generation Matisse chips based on the Zen microarchitecture. Like all Ryzen, it is intended primarily for high-performance gaming and workstations, gaming systems and PC enthusiasts; at the same time, this series became the top among all “ryzens”, displacing Ryzen 7 from this position. For example, the first Ryzen 9 models had 12 cores and 24 threads, in later ones this number was increased to 16/32, respectively.

Ryzen Threadripper. AMD's High-Performance Gaming and Creativity Series: Threadripper chips are specifically designed for high-performance gaming systems and workstations, according to manufacturers. They have 8 cores and support multithreading.

In addition to the series, modern processors are also divided into generations, according to the release time. At the same time, one generation includes several series, and one series can be produced within several generations. See "Code Name" for more on this.

Code name

This parameter characterizes, firstly, the technical process (see above), and secondly, some features of the internal structure of processors. A new (or at least updated) codename is introduced to the market with each new CPU generation; chips of the same architecture are "coevals", but may belong to different series (see above). At the same time, one generation can include both one and several code names.

Here are the most common Intel codenames today: Cascade Lake-X (10th gen), Comet Lake (10th gen), Comet Lake Refresh (10th generation), Rocket Lake (11th generation), Alder Lake (12th generation), Raptor Lake (13th generation), Raptor Lake Refresh (14th generation).

For AMD, this list includes Zen+ Picasso, Zen2 Matisse, Zen2 Renoir, Zen3 Vermeer, Zen3 Cezanne, Zen4 Raphael, Zen4 Phoenix and Zen5 Granite Ridge.

Lithography

The technical process by which the CPU is manufactured.

The parameter is usually specified by the size of the individual semiconductor elements (transistors) that make up the processor integrated circuit. The smaller their size, the more advanced the technical process is considered: miniaturization of individual elements allows you to reduce heat generation, reduce the overall size of the processor and at the same time increase its flow Rate. CPU manufacturers are trying to move towards reducing the technical process, and the newer the processor, the lower the numbers you can see at this point.

The technical process is measured in nanometers (nm). In the modern arena of central processors, solutions made using the 7 nm, 10 nm, 12 nm process technology predominate, high-end CPU models are manufactured using the 4 nm and 5 nm process technology, 14 nm and 22 nm solutions are still afloat, and are rapidly fading into the background, but 28 nm and 32 nm occur periodically.

Threads

The number of instruction streams that the processor can execute at the same time.

Initially, each physical core (see "Number of cores") was intended to execute one thread of instructions, and the number of threads corresponded to the number of cores. However, there are many processors today that support Hyper-threading or SMT (see below) and can run two threads on each core at once. In such models, the number of threads is twice the number of cores — for example, 8 threads will be indicated in a quad-core chip.

In general, a higher number of threads, other things being equal, has a positive effect on speed and efficiency, but increases the cost of the processor.

Multithreading

Processor support for Hyper-threading.

Hyper-threading is actually a variant of simultaneous multithreading (SMT) developed by Intel and used in its chips since 2002. This technology is used to optimize the load on each physical processor core. Its key principle (simplified) is that each such core is defined by the system as 2 logical cores — for example, the system “sees” a dual-core processor as a quad-core one. At the same time, each physical core constantly switches between two logical cores, in fact, between two threads of commands: when a delay occurs in one thread (for example, in case of an error or while waiting for the result of the previous instruction), the core does not idle, but starts executing the second thread commands. Thanks to this technology, the response time of the processor is reduced, and in server systems, stability is increased with numerous connected users.

In AMD processors, a similar function is used under the original name SMT (see below).

TurboBoost / TurboCore

The maximum processor clock speed that can be reached when running in Turbo Boost or Turbo Core overclocking mode.

The name "Turbo Boost" is used for the overclocking technology used by Intel, "Turbo Core" for the solution from AMD. The principle of operation in both cases is the same: if some cores are not used or work under a load below the maximum, the processor can transfer part of the load from the loaded cores to them, thus increasing computing power and performance. Operation in this mode is characterized by an increase in the clock frequency, and it is indicated in this case.

Note that we are talking about the maximum possible clock frequency — modern CPUs are able to regulate the operating mode depending on the situation, and with a relatively low load, the actual frequency may be lower than the maximum possible. See "Clock frequency" for the general meaning of this parameter.

IGP

Model of the integrated video core installed in the processor. See "Integrated Graphics" for details on the core itself. And knowing the name of the graphics chip model, you can find its detailed characteristics and clarify the performance of the processor when working with video.

In terms of specific models, Intel processors use HD Graphics, specifically 510, 530, 610, 630 and UHD Graphics with models 610, 630, 730, 750, 770. AMD chips, in turn, can carry Radeon Graphics, Radeon R5 series, Radeon R7 series, and Radeon RX Vega graphics cards.

At the same time, processors without a graphics core are appropriate for purchase if you plan to fully assemble a PC with a graphics card. In this case, overpaying for a processor with a graphics core does not make sense.

Multiplier

The coefficient on the basis of which the value of the processor clock frequency is displayed. The latter is calculated by multiplying the multiplier by the system bus frequency (see System bus frequency). For example, with a system bus frequency of 533 MHz and a multiplier of 4, the processor clock speed will be approximately 2.1 GHz.

Max. operating temperature

The maximum temperature at which the processor is able to effectively continue to work — when heated above this temperature, most modern processors are turned off in order to avoid the unpleasant consequences of overheating (up to the burning of the chip). The higher the maximum operating temperature, the less demanding the processor is on the cooling system, however, the cooling power anyway should not be lower than TDP (see Heat Dissipation (TDP)).
Price graph
AMD Ryzen 3 Picasso often compared
AMD Ryzen 5 Raven Ridge often compared