Dark mode
Укр|Eng|Рус
Ukraine
Catalog   /   Computing   /   Components   /   Motherboards

Comparison MSI B450 TOMAHAWK MAX vs MSI B450 GAMING PLUS MAX

Add to comparison
MSI B450 TOMAHAWK MAX
MSI B450 GAMING PLUS MAX
MSI B450 TOMAHAWK MAXMSI B450 GAMING PLUS MAX
from 20 832 ₴
Outdated Product
from 3 616 ₴
Expecting restock
User reviews
0
1
0
3
Main
MSI MAX motherboards support Ryzen Matisse processors out of the box
Automatic overclocking of the entire system in three clicks. 4 DDR4 slots at 4133 MHz. A pair of reinforced PCI-E with Crossfire support. Turbo M.2 interface.
MSI MAX motherboards support Ryzen Matisse processors out of the box
Featuresgaming for overclockinggaming for overclocking
SocketAMD AM4AMD AM4
Form factorATXATX
Power phases66
VRM heatsink
LED lighting
Lighting syncMSI Mystic Light Sync
Size (HxW)305x244 mm305x244 mm
Chipset
ChipsetAMD B450AMD B450
BIOSAmiAmi
UEFI BIOS
RAM
DDR44 slot(s)4 slot(s)
Memory moduleDIMMDIMM
Operation mode2 channel2 channel
Max. clock frequency4133 MHz4133 MHz
Max. memory64 GB128 GB
XMP
Drive interface
SATA 3 (6Gbps)66
M.2 connector11
M.21xSATA/PCI-E 4x1xSATA/PCI-E 4x
M.2 version1x3.0
Integrated RAID controller
Expansion slots
1x PCI-E slots34
PCI-E 16x slots22
PCI Modes16x/4x16x/4x
PCI Express3.03.0
CrossFire (AMD)
Steel PCI-E connectors
Internal connections
USB 2.022
USB 3.2 gen111
RGB LED strip22
More featuresClear CMOS, Chassis IntrusionClear CMOS
Video outputs
DVI outputDVI-DDVI-D
HDMI output
HDMI versionv.1.4
Integrated audio
AudiochipRealtek ALC892Realtek ALC892
Sound (channels)7.17.1
Network interfaces
LAN (RJ-45)1 Gbps1 Gbps
LAN ports11
LAN controllerRealtek 8111HRealtek 8111H
External connections
USB 2.022
USB 3.2 gen122
USB 3.2 gen212
USB C 3.2 gen21
PS/211
BIOS FlashBack
Power connectors
Main power socket24 pin24 pin
CPU power8 pin8 pin
Fan power connectors66
CPU Fan 4-pin11
CPU/Water Pump Fan 4-pin11
Chassis/Water Pump Fan 4-pin44
Added to E-Catalogjuly 2019july 2019

LED lighting

The presence of its own LED backlight on the motherboard. This feature does not affect the functionality of the "motherboard", but gives it an unusual appearance. Therefore, it hardly makes sense for an ordinary user to specifically look for such a model (a motherboard without backlighting is enough for him), but for modding lovers, backlighting can be very useful.

LED backlighting can take the form of individual lights or LED strips, come in different colours (sometimes with a choice of colours) and support additional effects — flashing, flickering, synchronization with other components (see "Lightning synchronization"), etc. Specific features depend on the motherboard model.

Lighting sync

Synchronization technology provided in the board with LED backlight (see above).

Synchronization itself allows you to "match" the backlight of the motherboard with the backlight of other system components — cases, video cards, keyboards, mice, etc. Thanks to this matching, all components can change colour synchronously, turn on / off at the same time, etc. Specific features the operation of such backlighting depends on the synchronization technology used, and, usually, each manufacturer has its own (Mystic Light Sync for MSI, RGB Fusion for Gigabyte, etc.). The compatibility of the components also depends on this: they must all support the same technology. So the easiest way to achieve backlight compatibility is to collect components from the same manufacturer.

Max. memory

The maximum amount of RAM that can be installed on the motherboard.

When choosing according to this parameter, it is important to take into account the planned use of the PC and the real needs of the user. So, volumes up to 32 GB inclusive are quite enough to solve any basic problems and run games comfortably, but without a significant reserve for an upgrade. 64 GB is the optimal option for many professional use cases, and for the most resource-intensive tasks like 3D rendering, 96 GB or even 128 GB of memory will not be a limit. The most “capacious” motherboards are compatible with volumes of 192 GB or more - they are mainly top-end solutions for servers and HEDT (see “In the direction”).

You can choose this parameter with a reserve – taking into account a potential RAM upgrade, because installing additional RAM sticks is the simplest way to increase system performance. Taking this factor into account, many relatively simple motherboards support very significant amounts of RAM.

XMP

The ability of the motherboard to work with RAM modules that support XMP (Extreme Memory Profiles) technology. This technology was developed by Intel; it is used in motherboards and RAM blocks and only works if both of these system components are XMP compliant. A similar technology from AMD is called AMP.

The main function of XMP is to facilitate system overclocking (“overclocking”): special overclocking profiles are “sewn” into the memory with this technology, and if desired, the user can only select one of these profiles without resorting to complex configuration procedures. This is not only easier, but also safer: every profile added to the bar is tested for stability.

M.2 version

The version of the M.2 interface determines both the maximum data transfer rate and the supported devices that can be connected via physical M.2 connectors (see the corresponding paragraph).

The version of the M.2 interface in the specifications of motherboards is usually indicated by the number of connectors themselves and by the PCI-E revision provided for in each of them. For example, the entry “3x4.0” means three connectors capable of supporting PCI-E 4.0; and the designation “2x5.0, 1x4.0” means a trio of connectors, two of which support PCI-E 4.0, and another one supports PCI-E 5.0.

1x PCI-E slots

Number of PCI-E (PCI-Express) 1x slots installed on the motherboard. There are motherboards for 1 PCI-E 1x slot, 2 PCI-E 1x slots, 3 PCI-E 1x ports and even more.

The PCI Express bus is used to connect various expansion cards — network and sound cards, video adapters, TV tuners and even SSD drives. The number in the name indicates the number of PCI-E lines (data transfer channels) supported by this slot; the more lines, the higher the throughput. Accordingly, PCI-E 1x is the basic, slowest version of this interface. The data transfer rate for such slots depends on the PCI-E version (see "PCI Express Support"): in particular, it is slightly less than 1 GB / s for version 3.0 and slightly less than 2 GB / s for 4.0.

Separately, we note that the general rule for PCI-E is as follows: the board must be connected to a slot with the same or more lines. Thus, only single-lane boards will be guaranteed to be compatible with PCI-E 1x.

HDMI version

HDMI connector version (see above) installed in the motherboard.

— v.1.4. The earliest of the standards found nowadays, which appeared back in 2009. Supports resolutions up to 4096x2160 inclusive and allows you to play Full HD video with a frame rate of up to 120 fps — this is enough even for 3D playback.

— v.1.4b. A modified version of v.1.4 described above, which introduced a number of minor updates and improvements — in particular, support for two additional 3D formats.

— v.2.0. Also known as HDMI UHD, this version introduced full 4K support, with frame rates up to 60 fps, as well as the ability to work with 21:9 ultra-widescreen video. In addition, thanks to the increased bandwidth, the number of simultaneously reproduced audio channels has grown to 32, and audio streams to 4. And in the v.2.0a improvement, HDR support has also been added to all this.

— v.2.1. Another name is HDMI Ultra High Speed. Compared to the previous version, the interface bandwidth has really increased significantly — it is enough to transmit video at resolutions up to 10K at 120 frames per second, as well as to work with the extended BT.2020 colour space (the latter may be useful for some professional tasks). HDMI Ultra High Speed cables are required to use the full capabilities of HDMI v2.1, but older standard features are available with regular cables.

USB 3.2 gen2

The number of native USB 3.2 gen2 connectors provided on the back of the motherboard. In this case, we mean traditional, full-size USB A ports.

USB 3.2 gen2(formerly known as USB 3.1 gen2 and simply USB 3.1) is the evolution of USB 3.2 after version 3.2 gen1 (see above). This standard provides connection speeds up to 10 Gbps, and to power external devices in such connectors, USB Power Delivery technology (see below) can be provided, which allows you to output up to 100 W per device (however, Power Delivery support is not mandatory, its presence should be specified separately). Traditionally for the USB standard, this interface is backwards compatible with previous versions — in other words, you can easily connect a device supporting USB 2.0 or 3.2 gen1 to this port (unless the speed will be limited by the capabilities of a slower version).

The more connectors provided in the design, the more peripheral devices can be connected to the motherboard without the use of additional equipment (USB splitters). In some models of motherboards, the number of ports of this type is 5 or even more. At the same time, we note that in addition to the connectors on the rear panel, connectors on the board itself (more precisely, ports on the case connected to such connectors) can also provide a USB connection. See below for more on this.

USB C 3.2 gen2

The number of USB-C 3.2 gen2 connectors provided on the back of the motherboard.

USB-C is a relatively new type of connector used in both portable and desktop PCs. It has a small size and a convenient double-sided design, thanks to which the plug can be inserted into the connector in either direction. And version 3.2 gen2 connectivity (formerly known as USB 3.1 gen2 and USB 3.1) is capable of operating at speeds up to 10 Gbps and supports USB Power Delivery technology, which allows you to supply power to external devices up to 100 watts. However, the presence of Power Delivery should be specified separately, this function is not mandatory.

As for the quantity, most often there is only one such port, only a few motherboard models have two USB-C 3.2 gen2 connectors. This is due to the fact that not so many peripherals with a USB-C plug are produced for desktop PCs — full-sized USB A are still more popular. Also note that in addition to the connectors on the rear panel, connectors on the board itself can also provide a USB connection (more precisely, ports on the case connected to such connectors). See below for more on this.
Price graph
MSI B450 TOMAHAWK MAX often compared
MSI B450 GAMING PLUS MAX often compared