Укр|Eng|Рус
Ukraine
Catalog   /   Tools & Gardening   /   Power Tools   /   Drills & Screwdrivers

Comparison Makita DF333DWYE vs Bosch GSR 12V-15 Professional 0601868122

Add to comparison
Makita DF333DWYE
Bosch GSR 12V-15 Professional 0601868122
Makita DF333DWYEBosch GSR 12V-15 Professional 0601868122
Compare prices 21Compare prices 1
User reviews
1
0
0
2
0
0
0
2
TOP sellers
Main
Light weight (for its class). 2 speeds. Torque adjustment. Quick release chuck.
Product typedrill driverdrill driver
Designgungun
Specs
Rotation speed450/1700 rpm400/1300 rpm
Torque
30 Nm
with adjustment
20 steps
30 Nm
with adjustment
20 steps
Reducer2-speed2-speed
Number of speeds22
Reversesliderslider
Weight1.1 kg1 kg
Chuck
Chuck typekeylesskeyless
Chuck diameter10 mm10 mm
Wood drilling max. 21 mm19 mm
Metal drilling max. 10 mm10 mm
Features
Features
motor brake
LED light
motor brake
LED light
In box
case (bag)
charger
case (bag)
charger
Power supply
Power sourcebatterybattery
Battery in set22
Battery platformMakita CXTBosch Professional 12 V
Battery voltage12 V12 V
Battery typeLi-IonLi-Ion
Battery capacity1.5 Ah2 Ah
Compatible batteriesBL1015, BL1020B, BL1040B, BL1016, BL1021B, BL1041BGBA 10.8, GBA 12
Charging time50 min45 min
Charge level indicator
Battery mountsliderpod-type
Added to E-Catalogmarch 2019december 2018

Rotation speed

The speed of rotation of the working nozzle provided by the tool.

If a single number is indicated in this paragraph (for example, 1800), it can be either a standard, constant, or maximum rotation speed. This refers to the maximum speed if the tool has more than one speed (see "Number of speeds") and/or a speed controller (see "Functions"). In turn, two or three numbers through an oblique line (for example, 1100/2300/3400) are indicated only for models that have the corresponding number of individual speeds. Each of these numbers indicates the standard (and in the presence of a speed controller — the maximum) number of revolutions at one of the speeds.

Anyway, when choosing a tool by the number of revolutions, it is worth considering both its general type (see "Device") and the specifics of the intended work. Detailed recommendations on this matter are quite extensive, it makes no sense to give them in full here — it is better to turn to special sources. We note only a few general points. So, high -speed drills nowadays are considered to be drills capable of delivering more than 3000 rpm. In general, high speed contributes to productivity, but there is also a downside: increasing the speed (for the same power) reduces torque — accordingly, the efficiency of working with stubborn materials and large diameter nozzles decreases. Therefore, it makes sense to specifically look for a "high-speed" tool only if speed is of key im...portance; it doesn’t hurt to make sure that the model you choose can provide the required efficiency and torque.

Weight

The total weight of the tool is usually the device itself, without attachments. For battery models (see "Power Source"), usually, the weight is indicated with a standard battery installed; for battery-powered models, the weight can be given both with and without batteries, but in this case this point is not particularly important.

Other things being equal, less weight simplifies work, increases accuracy of movement and allows you to use the tool for longer without tiring. However, note that high power and productivity inevitably increase the mass of the tool; and various tricks to reduce weight increase the price and can reduce reliability. In addition, in some cases, a massive design is more preferable. First of all, this applies to work with a large load — for example, drilling holes of large diameter, or making recesses with impact: a heavy tool is more stable, it is less prone to jerks and shifts due to uneven material, vibration of mechanisms, etc.

It is also worth noting that specific weight values are directly related to the type of tool (see "Device"). Screwdrivers are the lightest — in most of them this figure does not exceed 500 g. Screwdrivers and drill drivers are more "heavy": their average weight is 1.1 – 1.5 kg, although there are many lighter ( 0.6 – 1 kg) and heavier ( 1.6 – 2 kg or more ) mode...ls. And classic drills and wrenches have the greatest weight: such a tool must be quite powerful, so for them 1.6 – 2 kg is an average, 2.1 – 2.5 kg is above average, and many units weigh more than 2, 5 kg.

Wood drilling max. ⌀

The largest diameter of holes that the tool can make when drilling with a conventional drill in wood.

The larger the hole diameter, the higher the resistance of the material, the more power the tool must provide and the higher the load on it. Therefore, the maximum allowable drilling diameter must not be exceeded, even if the chuck allows you to install a thicker drill bit — this can lead to tool breakage and even injury to others.

It is worth noting that some types of wood can have a fairly high density, and for them the actual allowable drill diameter will be, accordingly, less than the claimed one. However, this is true mainly for exotic breeds, which are extremely rare in our area.

Battery platform

The name of the battery platform supported by the device. A single battery platform is used to combine various power tools of the same brand into one line (screwdriver, grinder, circular saw, etc.). Devices on the same platform use interchangeable batteries and chargers. Thanks to this, for example, there is no need to select a battery for each individual model of a power tool, because one purchased as a spare battery can be used in various power tools, depending on the situation or as needed. Batteries of the same platform basically differ from each other except perhaps in capacity.

Battery capacity

The capacity of the battery supplied with the respective tool (see "Power Source"). The most modest capacity values in modern power tools do not even reach 1 Ah, such batteries are found mainly among electric screwdrivers(see "Device"). And in powerful professional models there are batteries for 3 – 4 Ah and even more.

Theoretically, the higher the capacity, the longer the tool will be able to work on a single battery charge. However, in fact, things are far from being so clear cut. First, the ampere-hour is a fairly specific unit; its features are such that only batteries with the same voltage can be directly compared by the number of ampere-hours. With a difference in voltage, you need to convert the capacitance to watt-hours and use them for comparison. Secondly, the actual battery life of the tool depends not only on the properties of the battery, but also on the power consumption and other performance characteristics. Thus, it is possible to compare different models in terms of battery capacity only with the same supply voltage and similar capabilities.

Compatible batteries

Battery models compatible with the tool.

When choosing a tool, this information is relevant mainly for models without a battery in the kit (see "Complete battery"). For tools that come with batteries, the battery model is more of a reference—it's mostly "for the future" if a spare or replacement battery is needed. However, this data can also be useful in the selection process — for example, to assess compatibility with an existing battery on the farm, or to find detailed data on compatible batteries and determine how they meet your requirements (in particular, there are formulas that allow you to determine the time of continuous operation from a specific battery; these formulas can be found in special sources).

Charging time

The time to fully charge the battery that the tool is equipped with from a standard charger (when using other batteries or a “non-native” charger, this time may vary both in one direction and in the other).

For cordless tools in general, see "Power Source". And charging time data gives you an idea of how you'll need to organize your workflow and how long breaks you'll need to charge your batteries. The specific duration of the process will depend both on the capacity of the battery (ceteris paribus, a more capacious model takes longer to charge), and on the technologies used by the manufacturer that increase charging efficiency. However, in general, it is customary to refer to tools with a good charging speed as models where this procedure takes no more than 45 minutes.

We also note that the specific meaning of this parameter also depends on the number of batteries in the kit. Recall that there are often several of them at once (see "Complete battery"), and while one battery is working, the rest can be charged. This allows you to reduce interruptions to a minimum, and even completely do without them. But if there is only one battery, charging breaks will inevitably be required in full. This is especially true for tools with a built-in power source (in models with replaceable batteries, the situation can be corrected by purchasing additional batteries).

Charge level indicator

An indicator that signals the battery level in the corresponding tool (see "Power supply").

The device and capabilities of such a pointer can vary from an LED "light" that gives the simplest signals by changing colour and/or blinking frequency, to detailed data on the instrument's own display (see "Functions"). However, anyway , the charge level indicator makes it easier to monitor the state of the battery and reduces the likelihood of being with an “empty” battery at the wrong time.

Battery mount

Method of attaching the battery to the tool.

Clip. With this fixation, the battery is fully or partially inserted into the handle of the tool — like a clip (magazine) of a pistol, hence the name. This method is convenient in that when installing the battery, there is a minimum of unnecessary parts outside; and small low-power batteries can completely hide inside the case without affecting the dimensions of the tool. On the other hand, for powerful and capacious power supplies with significant dimensions and weight, the clip-on mounting method is poorly suited for a number of reasons. Therefore, this option is found much less often than sliders, and mainly among low-power instruments.

Slider. This method involves the use of special guides — a kind of "sled" along which the battery moves during installation and removal; such "sledges" are usually placed at the bottom, at the end of the handle. The slider is suitable for batteries of almost any size and weight, including the most powerful and heavy batteries used in power tools. In addition, it does not have such severe restrictions on the shape of the battery as a clip-type mount. So most modern cordless tools use sliders, and for medium and high power units, this option is almost standard. Its disadvantages include perhaps the moment that the installed battery is located outside the tool and somewhat increases its dimensions. Howe...ver, this point most often turns out to be unprincipled — especially for powerful and heavy devices that are initially quite large.
Price graph
Makita DF333DWYE often compared
Bosch GSR 12V-15 Professional 0601868122 often compared