Dark mode
Укр|Eng|Рус
Ukraine
Catalog   /   Computing   /   Gaming & Entertainment   /   VR Headsets

Comparison Oculus Go 64 Gb vs Lenovo Mirage Solo

Add to comparison
Oculus Go 64 Gb
Lenovo Mirage Solo
Oculus Go 64 GbLenovo Mirage Solo
from 14 632 ₴
Outdated Product
from 15 880 ₴
Outdated Product
User reviews
0
0
0
1
Main
Oculus Go is a standalone VR headset that does not require connection to a computer or smartphone. Controller included. Spatial Sound Technology. 3D location tracking.
Compatibilityindependent deviceindependent device
Specs
Screen resolution2560x1440 px2560x1440 px
Field of view100 °110 °
Built-in memory64 GB64 GB
RAM3 GB4 GB
CPUSnapdragon 821Qualcomm Snapdragon 835 VR
Refresh rate60 fps75 fps
Accelerometer
Gyroscope
Proximity sensor
Lens distance adjusting
Pupillary distance adjustment
Multimedia
Card reader
USB C+
Bluetoothv 4.0v 5.0
Wi-FiWi-Fi 5 (802.11ac)Wi-Fi 5 (802.11ac)
Headphones
Headphone output
General
Controlpush-button
Controller
Track camera
Battery capacity2600 mAh4000 mAh
Operating time7 h
Materialplasticplastic
Dimensions (HxWxD)105x190x115 mm180x204x270 mm
Weight468 g645 g
Added to E-Catalogmay 2019may 2019

Field of view

The viewing angle provided by virtual reality glasses is the angular size of the space that falls into the user's field of view. Usually, the characteristics indicate the size of this space horizontally; however, if you need the most accurate information, this point needs to be specified separately.

The wider the viewing angle — the more the game space the user can see without turning his head, the more powerful the immersion effect and the less likely that the image will be subject to the "tunnel vision" effect. On the other hand, making the field of view too wide also does not make sense, given the characteristics of the human eye. In general, a large viewing angle is considered to be an angle of 100° or more. On the other hand, there are models where this indicator is 30° or even less — these are, usually, specific devices (for example, drone piloting glasses and augmented reality glasses), where such characteristics are quite justified given the overall functionality.

RAM

The amount of random access memory (RAM) installed in glasses.

This parameter is relevant only for independent devices (see "Intended use"). Theoretically, the more RAM in the gadget, the higher its power, the faster it is able to work and the better it handles with “heavy” tasks. However, in fact, this characteristic has more reference than practical value. Firstly, the capabilities of standalone glasses are also highly dependent on the processor and video adapter used. Secondly, the amount of memory is selected in such a way that the glasses are guaranteed to be able to cope with the tasks for which they were originally intended. Actually, problems can only arise with the launch of very demanding applications or resource-intensive video (for example, 4K panoramic videos); so paying attention to the amount of RAM makes sense only if you plan to use glasses for such purposes.

As for specific volumes, they in modern devices range from 2 to 4 GB.

CPU

The model of the processor installed in the glasses.

This information is indicated mainly for stand-alone devices (see "Intended use") — it is in them that the capabilities of the glasses as a whole directly depend on the processor model. And knowing the name of the chip, you can find detailed data on it and evaluate its effectiveness. At the same time, in fact, such a need arises extremely rarely: manufacturers choose processors in such a way that glasses can be used for their main purpose without any problems. So when choosing, you should pay attention to more practical parameters — display resolution, refresh rate, etc.

Refresh rate

The refresh rate supported by the glasses' built-in screens, in simple terms, is the maximum frame rate that the screens are capable of delivering.

Recall that screens are provided in models for PC / consoles and in stand-alone devices (see "Intended use"). And the quality of the picture directly depends on this indicator: other things being equal, a higher frame rate provides a smoother image, without jerks and with good detail in dynamic scenes. The flip side of these benefits is an increase in price.

It is also worth considering that in some cases the actual frame rate will not be limited by the capabilities of the glasses, but by the characteristics of the external device or the properties of the content being played. For example, a relatively weak PC graphics card may not be able to pull out a high frame rate signal, or a certain frame rate may be set in the game and not provide boosting. Therefore, you should not chase after large values and points with a frequency of 90 fps will be enough.

Proximity sensor

The presence of a sensor in the glasses that reacts to approaching the user's face.

A similar sensor is used to automatically switch between operating and standby modes: for example, when the user takes off the glasses, the sensor turns off the built-in screens (or the phone, if it is connected to the glasses via a connector), saving battery power and equipment life, and when put on, it turns on points for full functionality.

Lens distance adjusting

The ability to move the lenses of the glasses back and forth, thus changing their location relative to the screen and the user's eyes. The specific meaning of this function can be different: it can adjust the angle of view (so that the screen fits completely in the field of view and at the same time is not too small), play the role of diopter correction (which is important for users who wear glasses) or focus, change the setting interpupillary distance (see below), etc. These nuances should be clarified separately. However, anyway, this function will not be superfluous — it makes it easier to adjust the glasses to the personal characteristics of the user.

Pupillary distance adjustment

The ability to adjust the interpupillary distance of glasses — that is, the distance between the centers of two lenses. To do this, the lenses are mounted on movable mounts that allow them to be moved to the right / left. The meaning of this feature is that for normal viewing, the centers of the lenses must be opposite the user's pupils — and for different people, the distance between the pupils is also different. Accordingly, this setting will be useful anyway, but it is especially important for users of a large or petite physique, whose interpupillary distance is noticeably different from the average.

At the same time, there is a fairly significant number of glasses that do not have this function. They can be divided into three categories. The first is devices where the lack of adjustment for the interpupillary distance is compensated in one way or another (for example, by a special form of lenses that does not require adjustment). The second is models where this adjustment is not needed in principle (in particular, some augmented reality glasses). And the third — the simplest and cheapest solutions, where additional adjustments were abandoned to reduce the cost.

Card reader

The presence of a card reader in the glasses — a device for reading removable memory cards.

Such equipment is found only in independent devices (see "Intended use"). The card reader allows you to install an additional amount of memory to store various data — in addition to your own points drive. At the same time, removable cards have a number of advantages: they are much cheaper than built-in storage (in terms of gigabytes of volume), and the volume of such a card can be chosen at your discretion. So a model with a small capacity, but with a card reader, can be a good alternative to glasses with a large amount of internal memory. Also note that you can purchase several memory cards and change them as needed. And card readers are available in many modern devices (laptops, smartphones, tablets, etc.), so that removable cards make it easier to store information with such devices (for example, you can record a movie on a card for viewing). On the other hand, removable memory is slower than the built-in memory, and some software functions may be limited for it — in particular, not every model of glasses allows you to install applications on the card.

USB C

The presence in the glasses of the connector type USB-C. This is a relatively new type of USB port, which has a miniature size (slightly larger than microUSB) and a convenient double-sided design that allows you to connect the plug in either direction. It can be found in glasses for various purposes and, accordingly, provide different ways of application. So, in models for PC / consoles, this connector is used similarly to traditional USB — with the main connection, in parallel with the HDMI or DisplayPort video interface. In standalone devices, on the other hand, USB-C is mainly used to charge the battery and connect to a computer for direct file exchange, settings management, firmware updates, etc.

Also note that this paragraph may specify the USB version, which corresponds to the USB-C connector. Nowadays, two versions are relevant — 3.2 gen 1 and 3.2 gen 2; for VR glasses, the difference between them is generally not fundamental.
Price graph
Oculus Go 64 Gb often compared