Украина
Каталог   /   Фототехника   /   Оптические приборы   /   Подзорные трубы

Сравнение Levenhuk Blaze BASE 50F vs Veber Pioneer 15-45x60 P

Добавить в сравнение
Levenhuk Blaze BASE 50F
Veber Pioneer 15-45x60 P
Levenhuk Blaze BASE 50FVeber Pioneer 15-45x60 P
от 1 430 грн.
Товар устарел
Товар устарел
Кратность увеличения7 x15 – 45 x
Оптическая системалинзоваялинзовая
Поле зрения на расстоянии 1 км122 м44 – 22 м
Угловое поле зрения7 °
Мин. дистанция фокусировки5 м6 м
Диоптрическая коррекция
Диапазон коррекции диоптрий±4 D
Конструкция
Диаметр объектива50 мм60 мм
Диаметр выходного зрачка7.14 мм4 – 1.3 мм
Вынос выходного зрачка23 мм
Фокусировкакольцом на корпусе
Сменный окуляр
Расположение окулярапод 45°прямое
Тип просветлениямногослойноемногослойное
Тип призмPorro
Материал призмBK-7BaK-4
Для дигископинга
 /резьба под фотоадаптер/
Пыле-,влагозащита
Общее
Штатив в комплекте
 /настольный/
Чехол
Корпуспластикобрезиненный ABS пластик
Вес
610 г /в упаковке/
651 г
Дата добавления на E-Katalogиюль 2018октябрь 2016

Кратность увеличения

Кратность увеличения изображения, обеспечиваемая подзорной трубой. Грубо говоря, данный параметр описывает, во сколько раз видимый в окуляре трубы объект будет больше, чем при рассматривании его с того же расстояния невооружённым глазом.

Кратность — первое число (числа) в цифровой маркировке оптических приборов: к примеру, обозначение 25-75х50 соответствует кратности от 25х до 75х. Отметим, что большинство современных подзорных труб имеет именно переменную (настраиваемую) кратность. Это позволяет выбирать режим работы в зависимости ситуации: для поиска нужного предмета удобнее снизить степень увеличения, обеспечив обширное поле зрения, а найдя его — повысить кратность и рассмотреть подробно. Правда, в некоторых моделях для изменения кратности нужно заменить окуляр (см. «Сменный окуляр»).

Высокая кратность, с одной стороны, делает трубу «дальнобойной» и позволяет с лёгкостью рассматривать небольшие предметы на значительных расстояниях. С другой стороны, угол зрения при этом уменьшается, что затрудняет наблюдение за движущимися предметами и даже наведение оптики на цель. Кроме того, при увеличении кратности уменьшается ещё и диаметр выходного зрачка (см. ниже) и светосила трубы; компенсировать этот момент можно за счёт увеличения объектива, однако это соответствующим образом сказывается на цене. Так что специально искать мощную оптику с высокой степенью увеличения имеет смысл только тогда, когда такие возможности принципиально важны.

Поле зрения на расстоянии 1 км

Поле зрения подзорной трубы при расстоянии до рассматриваемых объектов в 1 км, т.н. «линейное поле зрения». По сути, это ширина (диаметр) пространства, попадающего в поле зрения при наблюдении с расстояния в 1 км.

Данный параметр широко используется в характеристиках подзорных труб наряду с угловым полем зрения (см. ниже): данные о линейном поле зрения более наглядны и приближены к практике, они позволяют оценить возможности подзорной трубы, не прибегая к специальным вычислениям.

Для моделей переменной кратности (а таких большинство) линейное поле зрения указывается в виде двух чисел — для минимального и для максимального увеличения.

Угловое поле зрения

Угол обзора, обеспечиваемый подзорной трубой.

Если провести две линии от центра объектива к двум противоположным точкам по краям поля зрения трубы — угол между этими линиями и будет соответствовать угловому полю зрения. Соответственно, чем больше угол — тем шире поле зрения; однако отдельные предметы в нём будут выглядеть более мелкими. И наоборот, повышение кратности увеличения неизбежно связано с уменьшением угла обзора. А поскольку большинство современных подзорных труб имеют переменную кратность увеличения, то и угловое поле зрения является изменяемым, и в характеристиках данный показатель указывается в виде двух чисел — для минимального и для максимального увеличения.

Мин. дистанция фокусировки

Наименьшее расстояние до рассматриваемого предмета, при котором подзорная труба способна на нём полноценно сфокусироваться — то есть минимальное расстояние, на котором изображение в окуляре будет оставаться чётким.

Подзорные трубы изначально созданы для рассматривания удалённых объектов, поэтому при слишком малой дистанции с наведением на резкость могут возникнуть проблемы. В свете этого производители и указывают в характеристиках данный параметр. Впрочем, даже в самых мощных и «дальнобойных» моделях минимальная дистанция фокусировки составляет порядка 25 м — на таком расстоянии нередко бывает достаточно и невооружённого глаза. Поэтому на данный параметр стоит обращать внимание лишь в тех случаях, когда возможность нормально работать вблизи имеет принципиальное значение — например, если труба используется на стрельбище, где расстояние до мишеней может быть разным, в т.ч. довольно небольшим.

Диоптрическая коррекция

Наличие диоптрической коррекции в конструкции подзорной трубы (обычно — в окуляре трубы).

Данная функция предназначена для тех, кто имеет проблемы со зрением и носит корректирующие очки с «плюсовыми» или «минусовыми» линзами. Смотреть в окуляр в очках не очень удобно — в частности, расстояние до глаза может оказаться больше, чем вынос зрачка (см. ниже), что ухудшает качество видимого изображения. Альтернативой этому могут быть контактные линзы, однако они подходят не всем. Другой, более удобный вариант — это как раз диоптрическая коррекция: она позволяет выставить нужное количество диоптрий (на «плюс» или на «минус») прямо в окуляре прибора и смотреть в него невооружённым глазом, видя чёткое изображение. Правда, диапазон регулировки (см. ниже) чаще всего относительно невелик, и при серьёзных проблемах со зрением данная функция может не обеспечить нужной степени коррекции. Тем не менее, даже в таких случаях человеку, нуждающемуся в очках, будет намного удобнее смотреть в «скорректированный» окуляр; изображение будет хоть и не идеальным, однако более чётким, чем при настройках оптики на здоровое зрение.

Диапазон коррекции диоптрий

Диапазон, в котором подзорная труба может осуществлять диоптрическую коррекцию (см. выше). Если характеристики очков попадают в этот диапазон, человек, носящий очки, сможет видеть в окуляре (правильно подстроенном) чёткую картинку даже без очков. Если же очки сильнее — придётся либо смотреть в них, либо озаботиться контактными линзами, либо смириться с тем, что видимое изображение может быть не очень чётким.

Диаметр объектива

Диаметр объектива — передней линзы подзорной трубы. Также для этой характеристики используется термин «апертура».

Диаметр объектива — одна из важнейших характеристик оптической системы: от апертуры напрямую зависит количество света, попадающее в объектив, и, соответственно, качество изображения (особенно при слабой освещённости). С точки зрения оптических характеристик однозначно можно сказать, что чем крупнее объектив — тем лучше, особенно при высокой кратности увеличения (подробнее см. «Диаметр выходного зрачка»). С другой стороны, большие линзы заметно влияют на размеры, вес, а главное — стоимость подзорных труб. Поэтому производители обычно выбирают размер объектива с учётом кратности, ценовой категории и специфики применения подзорной трубы — тем более что при малых кратностях и хорошем освещении даже сравнительно небольшая апертура вполне может обеспечить качественное изображение. Подробнее об этих закономерностях см. «Диаметр выходного зрачка». Кроме того, стоит отметить, что на особенности «картинки» влияют не только математические характеристики оптики, но и общее качество её компонентов.

Диаметр выходного зрачка

Диаметр выходного зрачка подзорной трубы.

Выходной зрачок — это проекция «видимого» трубой изображения, возникающая сразу за окуляром. Человек видит изображение в подзорной трубе именно за счёт того, что выходной зрачок проецируется на глаз.

Диаметр выходного зрачка соответствует размеру объектива, поделённому на кратность (и о том, и о другом см. выше). К примеру, для трубы с апертурой в 50 мм, работающей на кратности 25х, этот размер будет составлять 50/25 = 2 мм. При этом считается, что для обеспечения максимально яркого и комфортного изображения выходной зрачок должен быть не меньше, чем зрачок глаза наблюдателя — а это 2 – 3 мм на свету и до 8 мм (у пожилых людей — до 5 – 6 мм) в сумерках. Именно этим обусловлено то, что для комфортной работы на высоких кратностях и/или в условиях слабого освещения подзорная труба должна иметь довольно крупный объектив. Впрочем, большинство подобных оптических приборов рассчитаны на дневное применение, а для этого достаточно выходного зрачка размером от 1,33 мм.

Для большинства современных подзорных труб диаметр выходного зрачка указывается двумя числами — для минимального и для максимального увеличения.

Вынос выходного зрачка

Вынос выходного зрачка подзорной трубы.

О самом выходном зрачке подробнее см. выше. Здесь же отметим, что выносом называется такое расстояние от линзы окуляра до глаза наблюдателя, на котором размер видимого изображения из объектива соответствует видимому размеру линзы окуляра. Иными словами, наблюдаемая «картинка» в таком случае занимает всё пространство окуляра, без виньетирования (затемнения по краям) и без «расползания» за края окуляра. В таком случае и общее качество изображения будет наилучшим.

Если смотреть в трубу невооружённым глазом, у наблюдателя обычно не возникает проблем с тем, чтобы разместиться на расстоянии выноса, и на данный параметр можно не обращать особого внимания. Проблемы могут возникнуть, если пользователь носит очки, а диоптрической коррекции (см. выше) недостаточно, чтобы комфортно наблюдать без очков. В таких случаях желательно использовать модели с выносом зрачка хотя бы в 15 мм: такое расстояние хоть и не обеспечит наивысшего качества изображения при просмотре в очках, однако позволит без особых трудностей пользоваться прибором. Впрочем, в современных подзорных трубах данный параметр может достигать 18 мм и даже более.

Также отметим, что вынос зрачка может несколько уменьшаться при увеличении кратности; в таких случаях в характеристиках указываются два числа, соответствующие выносу на минимальном и на максимальном увеличении.
Динамика цен
Levenhuk Blaze BASE 50F часто сравнивают