Panasonic Server CS/CU-Z25YKEA 25 m² on the 1 unit(s)
Photos 31 |
Panasonic Server CS/CU-Z25YKEA 25 m²
on the 1 unit(s)
Type:split, wall
Recommended area:25 m²
heating T:from -15 °C
Consumption:510/700 W
Functions:night mode, control via smartphone
It is possible to control using the voice assistant Google Assistant or Amazon Alexa.
All specifications
Specifications Server CS/CU-Z25YKEA
|
|
Information in model description is for reference purposes.
Before buying always check characteristics and configuration of product with online store manager
Catalog Panasonic 2024 - new products, best sales and most actual models Panasonic.
Before buying always check characteristics and configuration of product with online store manager
Catalog Panasonic 2024 - new products, best sales and most actual models Panasonic.
How to choose an air conditionerThe main criteria to consider when choosing an air conditioner
What is the difference between a cheap air conditioner and an expensive one?Is it worth paying more when buying an air conditioner? Let's take a look at the pros and cons.
Buy Panasonic Server CS/CU-Z25YKEA 25 m² on the 1 unit(s)
All prices 10 →Кондиціонер Panasonic CS-Z25YKEA/CU-Z25YKEA Server (-25 C) | 59 999 ₴ | ||||
Кондиціонер Panasonic CS-Z25YKEA/CU-Z25YKEA | 59 999 ₴ | ||||
Panasonic CS-Z25YKEA/CU-Z25YKEA | 59 999 ₴ | ||||
Кондиціонер Panasonic Server CS-Z25YKEA/CU-Z25YKEA | 55 697 ₴ | ||||
Кондиціонер інверторний Panasonic CS-Z25YKEA/CU-Z25YKEA 0101040802-1004406 | 58 199 ₴ |
5 more offer(s)
Panasonic Server CS/CU-Z25YKEA configurations
Price for Panasonic Server CS/CU-Z25YKEA | ||||
---|---|---|---|---|
Panasonic Server CS/CU-Z25YKEA 25 m² on the 1 unit(s) | from 55 697 ₴ | 10 offers | ||
Panasonic Server CS/CU-Z35YKEA 35 m² on the 1 unit(s) | from 67 899 ₴ | 8 offers | ||
Panasonic Server CS/CU-Z42YKEA 42 m² | from 72 749 ₴ | 8 offers | ||
Panasonic Server CS/CU-Z50YKEA 50 m² on the 1 unit(s) | from 86 329 ₴ | 8 offers | ||
Panasonic Server CS/CU-Z71YKEA 70 m² on the 1 unit(s) | from 99 999 ₴ | 4 offers |
We recommendCompare using chart →